scholarly journals Exotic Torsion, Frobenius Splitting and the Slope Spectral Sequence

2007 ◽  
Vol 50 (4) ◽  
pp. 567-578 ◽  
Author(s):  
Kirti Joshi

AbstractIn this paper we show that any Frobenius split, smooth, projective threefold over a perfect field of characteristic p > 0 is Hodge–Witt. This is proved by generalizing to the case of threefolds a well-known criterion due to N. Nygaard for surfaces to be Hodge-Witt. We also show that the second crystalline cohomology of any smooth, projective Frobenius split variety does not have any exotic torsion. In the last two sections we include some applications.

2019 ◽  
Vol 155 (5) ◽  
pp. 1025-1045
Author(s):  
Christopher Lazda ◽  
Ambrus Pál

In this paper we prove a semistable version of the variational Tate conjecture for divisors in crystalline cohomology, showing that for $k$ a perfect field of characteristic $p$ , a rational (logarithmic) line bundle on the special fibre of a semistable scheme over $k\unicode[STIX]{x27E6}t\unicode[STIX]{x27E7}$ lifts to the total space if and only if its first Chern class does. The proof is elementary, using standard properties of the logarithmic de Rham–Witt complex. As a corollary, we deduce similar algebraicity lifting results for cohomology classes on varieties over global function fields. Finally, we give a counter-example to show that the variational Tate conjecture for divisors cannot hold with $\mathbb{Q}_{p}$ -coefficients.


2021 ◽  
Vol 9 ◽  
Author(s):  
Shubhodip Mondal

Abstract We prove that if G is a finite flat group scheme of p-power rank over a perfect field of characteristic p, then the second crystalline cohomology of its classifying stack $H^2_{\text {crys}}(BG)$ recovers the Dieudonné module of G. We also provide a calculation of the crystalline cohomology of the classifying stack of an abelian variety. We use this to prove that the crystalline cohomology of the classifying stack of a p-divisible group is a symmetric algebra (in degree $2$ ) on its Dieudonné module. We also prove mixed-characteristic analogues of some of these results using prismatic cohomology.


2020 ◽  
Vol 2020 (769) ◽  
pp. 87-119
Author(s):  
Sabin Cautis ◽  
Aaron D. Lauda ◽  
Joshua Sussan

AbstractRickard complexes in the context of categorified quantum groups can be used to construct braid group actions. We define and study certain natural deformations of these complexes which we call curved Rickard complexes. One application is to obtain deformations of link homologies which generalize those of Batson–Seed [3] [J. Batson and C. Seed, A link-splitting spectral sequence in Khovanov homology, Duke Math. J. 164 2015, 5, 801–841] and Gorsky–Hogancamp [E. Gorsky and M. Hogancamp, Hilbert schemes and y-ification of Khovanov–Rozansky homology, preprint 2017] to arbitrary representations/partitions. Another is to relate the deformed homology defined algebro-geometrically in [S. Cautis and J. Kamnitzer, Knot homology via derived categories of coherent sheaves IV, colored links, Quantum Topol. 8 2017, 2, 381–411] to categorified quantum groups (this was the original motivation for this paper).


2021 ◽  
Vol 9 ◽  
Author(s):  
Benjamin Antieau ◽  
Bhargav Bhatt ◽  
Akhil Mathew

Abstract We give counterexamples to the degeneration of the Hochschild-Kostant-Rosenberg spectral sequence in characteristic p, both in the untwisted and twisted settings. We also prove that the de Rham-HP and crystalline-TP spectral sequences need not degenerate.


Author(s):  
Dominic Leon Culver ◽  
Paul VanKoughnett

AbstractAs a step towards understanding the $$\mathrm {tmf}$$ tmf -based Adams spectral sequence, we compute the K(1)-local homotopy of $$\mathrm {tmf}\wedge \mathrm {tmf}$$ tmf ∧ tmf , using a small presentation of $$L_{K(1)}\mathrm {tmf}$$ L K ( 1 ) tmf due to Hopkins. We also describe the K(1)-local $$\mathrm {tmf}$$ tmf -based Adams spectral sequence.


2021 ◽  
Vol 19 (1) ◽  
pp. 706-723
Author(s):  
Yuri V. Muranov ◽  
Anna Szczepkowska

Abstract In this paper, we introduce the category and the homotopy category of edge-colored digraphs and construct the functorial homology theory on the foundation of the path homology theory provided by Grigoryan, Muranov, and Shing-Tung Yau. We give the construction of the path homology theory for edge-colored graphs that follows immediately from the consideration of natural functor from the category of graphs to the subcategory of symmetrical digraphs. We describe the natural filtration of path homology groups of any digraph equipped with edge coloring, provide the definition of the corresponding spectral sequence, and obtain commutative diagrams and braids of exact sequences.


Author(s):  
Dinakar Muthiah ◽  
Alex Weekes ◽  
Oded Yacobi

AbstractIn their study of local models of Shimura varieties for totally ramified extensions, Pappas and Rapoport posed a conjecture about the reducedness of a certain subscheme of {n\times n} matrices. We give a positive answer to their conjecture in full generality. Our main ideas follow naturally from two of our previous works. The first is our proof of a conjecture of Kreiman, Lakshmibai, Magyar, and Weyman on the equations defining type A affine Grassmannians. The second is the work of the first two authors and Kamnitzer on affine Grassmannian slices and their reduced scheme structure. We also present a version of our argument that is almost completely elementary: the only non-elementary ingredient is the Frobenius splitting of Schubert varieties.


Author(s):  
Dan Popovici ◽  
Jonas Stelzig ◽  
Luis Ugarte

Abstract For every positive integer r, we introduce two new cohomologies, that we call E r {E_{r}} -Bott–Chern and E r {E_{r}} -Aeppli, on compact complex manifolds. When r = 1 {r\kern-1.0pt=\kern-1.0pt1} , they coincide with the usual Bott–Chern and Aeppli cohomologies, but they are coarser, respectively finer, than these when r ≥ 2 {r\geq 2} . They provide analogues in the Bott–Chern–Aeppli context of the E r {E_{r}} -cohomologies featuring in the Frölicher spectral sequence of the manifold. We apply these new cohomologies in several ways to characterise the notion of page- ( r - 1 ) {(r-1)} - ∂ ⁡ ∂ ¯ {\partial\bar{\partial}} -manifolds that we introduced very recently. We also prove analogues of the Serre duality for these higher-page Bott–Chern and Aeppli cohomologies and for the spaces featuring in the Frölicher spectral sequence. We obtain a further group of applications of our cohomologies to the study of Hermitian-symplectic and strongly Gauduchon metrics for which we show that they provide the natural cohomological framework.


Sign in / Sign up

Export Citation Format

Share Document