CHAPTER 3 The Evolutionary History of Life on Earth

2021 ◽  
pp. 165-292
Author(s):  
Andrew Briggs ◽  
Hans Halvorson ◽  
Andrew Steane

The chapter discusses the history of life on Earth, and the lessons to be learned from the neo-Darwinian synthesis of evolutionary biology. The long and complex sequence of events in the evolutionary history of life on Earth requires considered interpretation. The neo-Darwinian synthesis is well-supported by evidence and gives rich insight into this process, but does not itself furnish a complete explanation or understanding of living things. This is because a process of exploration can only explore; it cannot fully dictate and can only partially constrain what type of thing will be found. What is found is constrained by other considerations, such as what is possible, and what can make sense. A brief critique of some of Richard Dawkins’ work is given, and also of the movement known as ‘Intelligent Design’. Education policy is well served by a fair appraisal of informed opinion in this area.


2019 ◽  
pp. 214-249
Author(s):  
Glenn-Peter Sætre ◽  
Mark Ravinet

How can genetics and genomics be used to understand the evolutionary history of organisms? This chapter focuses on such methods. First, the field of phylogenetics is introduced, as a way to visualize and quantify the evolutionary relationships among species. The chapter outlines how we go from aligning DNA sequence data to building gene trees and we argue that “tree-thinking” is fundamentally important for understanding evolution. The chapter also goes beyond phylogenetic trees to focus on phylogeography, i.e. the understanding of evolutionary relationships in a spatial context. More recently, the explosion of genomic data from ancient and modern human populations has made this an extremely exciting field which is transforming our understanding of our own evolutionary history. Before that, though, the chapter reviews how modern phylogenetics has arisen from historical efforts to classify life on Earth.


2014 ◽  
Vol 88 (2) ◽  
pp. 205-206
Author(s):  
James D. Schiffbauer ◽  
Shuhai Xiao

With the 1859 publication of On the Origin of Species, Charles Darwin posed contention against his synthesis on the history of life. His dilemma specifically regarded that the geologically sudden appearance of complex shelly invertebrates at the Cambrian Explosion followed an incomprehensible absence of a long-standing gradual transition to such forms. Indeed, as quoted from Chapter 10 of the sixth edition, “To the question why we do not find rich fossiliferous deposits belonging to these assumed earliest periods prior to the Cambrian system, I can give no satisfactory answer… the difficulty of assigning any good reason for the absence of vast piles of strata rich in fossils beneath the Cambrian system is very great… The case at present must remain inexplicable; and may be truly urged as a valid argument against the views here entertained” (p. 286–288). In the 155 years since this assertion, paleontologists focusing on the strata of the Ediacaran–Cambrian transition have uncovered a rich evolutionary history prior to the radiation of animals, but our resulting discoveries have neither been without debate nor unraveled the intricacies suggested by Darwin's dilemma. While we are continuing to learn from both geological and paleontological records, the organisms, their expanding ecosystem intricacy, and the increasing complexity of their behaviors during the Ediacaran and Cambrian periods are yet not well understood. With rapidly growing data and ideas, this transition in evolutionary history has become one of the intellectually richest periods in our record of life on Earth.


Photosynthesis is the prerequisite of all life on earth. Chlorophyll fulfils the requirements for photosynthesis: the absorption of visible light, the photochemical capabilities, a rich supply of redox levels and chemical stability. The biosynthetic pathway of chlorophyll can be read as the evolutionary history of photosynthesis. Our exegesis is that the primary porphyrins served for early photosynthesis. The porphyrins readily photo-oxidize organic compounds under the reducing, aqueous conditions of this early era. The formation of oxidized substances in a reducing atmosphere supplied the thermodynamic gradient necessary for organized life processes. Conversely, the closed-shell metalloporphyrins, notable magnesium porphyrins, are powerful photoreducing agents. When coupled to the ultimate electron source, water, oxygen was produced and the modern era of photosynthesis was born. At the same time, the efficiency and usefulness of the photopigments was increased by incorporating them into the organized cellular system of membranes. The clear gradient of ionic to hydrophophic structures along the biosynthetic pathway from porphyrins to chlorophyll supports this view. Experimental evidence on the photochemistry of porphyrins pigments in solution and in lipid bilayers form the basis for these arguments. In this way we can relate the structure of chlorophyll to its function in photosynthesis.


2018 ◽  
Vol 41 ◽  
Author(s):  
Kevin Arceneaux

AbstractIntuitions guide decision-making, and looking to the evolutionary history of humans illuminates why some behavioral responses are more intuitive than others. Yet a place remains for cognitive processes to second-guess intuitive responses – that is, to be reflective – and individual differences abound in automatic, intuitive processing as well.


Sign in / Sign up

Export Citation Format

Share Document