Алгоритм решения задачи оптимального управления структурированными популяциями, взаимодействующими на стационарном состоянии
Рассматривается задача оптимального управления с дифференциальной и интегральной связями. Начальное условие в рассматриваемой управляемой системе обыкновенных дифференциальных уравнений имеет нелокальный вид; оно определяется решением системы. Разрабатывается алгоритм поиска оптимального управления, максимизирующего функционал прибыли. Работа посвящена обоснованию элементов алгоритма, который позволяет свести решение исходной задачи к решению более простых задач оптимального управления, связь с которыми осуществляется через один из параметров модели. Доказана возможность и описан способ вычисления такого значения параметра, которое определяет решение исходной задачи. Предложенный подход позволяет эффективно решать оптимизационные задачи, возникающие в моделях управления структурированными популяциями, взаимодействующими на стационарном состоянии.