scholarly journals The Effects of Transaction Cost and Correlation of Brownian Motions on an Insurer’s Optimal Investment Strategy through Logarithmic Utility Optimization under Modified Constant Elasticity of Variance (M-CEV) Model

OALib ◽  
2020 ◽  
Vol 07 (07) ◽  
pp. 1-13
Author(s):  
Silas A. Ihedioha ◽  
Gbenga M. Ogungbenle ◽  
Philip T. Ajai
2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Aiyin Wang ◽  
Ls Yong ◽  
Yang Wang ◽  
Xuanjun Luo

The constant elasticity of variance (CEV) model is used to describe the price of the risky asset. Maximizing the expected utility relating to the Hamilton-Jacobi-Bellman (HJB) equation which describes the optimal investment strategies, we obtain a partial differential equation. Applying the Legendre transform, we transform the equation into a dual problem and obtain an approximation solution and an optimal investment strategies for the exponential utility function.


2016 ◽  
Vol 40 (5) ◽  
pp. 1382-1395 ◽  
Author(s):  
Ahmet Bakkaloglu ◽  
Taha Aziz ◽  
Aeeman Fatima ◽  
F.M. Mahomed ◽  
Chaudry Masood Khalique

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Peng Yang

A robust time-consistent optimal investment strategy selection problem under inflation influence is investigated in this article. The investor may invest his wealth in a financial market, with the aim of increasing wealth. The financial market includes one risk-free asset, one risky asset, and one inflation-indexed bond. The price process of the risky asset is governed by a constant elasticity of variance (CEV) model. The investor is ambiguity-averse; he doubts about the model setting under the original probability measure. To dispel this concern, he seeks a set of alternative probability measures, which are absolutely continuous to the original probability measure. The objective of the investor is to seek a time-consistent strategy so as to maximize his expected terminal wealth meanwhile minimizing his variance of the terminal wealth in the worst-case scenario. By using the stochastic optimal control technique, we derive closed-form solutions for the optimal time-consistent investment strategy, the probability scenario, and the value function. Finally, the influences of model parameters on the optimal investment strategy and utility loss function are examined through numerical experiments.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Hao Chang ◽  
Xi-min Rong ◽  
Hui Zhao ◽  
Chu-bing Zhang

We consider an investment and consumption problem under the constant elasticity of variance (CEV) model, which is an extension of the original Merton’s problem. In the proposed model, stock price dynamics is assumed to follow a CEV model and our goal is to maximize the expected discounted utility of consumption and terminal wealth. Firstly, we apply dynamic programming principle to obtain the Hamilton-Jacobi-Bellman (HJB) equation for the value function. Secondly, we choose power utility and logarithm utility for our analysis and apply variable change technique to obtain the closed-form solutions to the optimal investment and consumption strategies. Finally, we provide a numerical example to illustrate the effect of market parameters on the optimal investment and consumption strategies.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Xiaotao Liu ◽  
Hailong Liu

This paper investigates the optimal portfolio choice problem for a large insurer with negative exponential utility over terminal wealth under the constant elasticity of variance (CEV) model. The surplus process is assumed to follow a diffusion approximation model with the Brownian motion in which is correlated with that driving the price of the risky asset. We first derive the corresponding Hamilton–Jacobi–Bellman (HJB) equation and then obtain explicit solutions to the value function as well as the optimal control by applying a variable change technique and the Feynman–Kac formula. Finally, we discuss the economic implications of the optimal policy.


Author(s):  
K. N. C. Njoku ◽  
B. O. Osu

In this work, the optimal pension wealth investment strategy during the decumulation phase, in a defined contribution (DC) pension scheme is constructed. The pension plan member is allowed to invest in a risk free and a risky asset, under the constant elasticity of variance (CEV) model. The explicit solution of the constant relative risk aversion (CRRA) and constant absolute risk aversion (CARA) utility functions are obtained, using Legendre transform, dual theory, and change of variable methods. It is established herein that the elastic parameter, β, say, must not necessarily be equal to one (β ≠ 1). A theorem is constructed and proved on the wealth investment strategy. Observations and significant results are made and obtained, respectively in the comparison of our various utility functions and some previous results in literature.


Sign in / Sign up

Export Citation Format

Share Document