Unsettled Issues Concerning eVTOL for Rapid-response, On-demand Firefighting

2021 ◽  
Author(s):  
Johnny Doo ◽  

Recent advancements of electric vertical take-off and landing (eVTOL) aircraft have generated significant interest within and beyond the traditional aviation industry, and many novel applications have been identified and are in development. One promising application for these innovative systems is in firefighting, with eVTOL aircraft complementing current firefighting capabilities to help save lives and reduce fire-induced damages. With increased global occurrences and scales of wildfires—not to mention the issues firefighters face during urban and rural firefighting operations daily—eVTOL technology could offer timely, on-demand, and potentially cost-effective aerial mobility capabilities to counter these challenges. Early detection and suppression of wildfires could prevent many fires from becoming large-scale disasters. eVTOL aircraft may not have the capacity of larger aerial assets for firefighting, but targeted suppression, potentially in swarm operations, could be valuable. Most importantly, on-demand aerial extraction of firefighters can be a crucial benefit during wildfire control operations. Aerial firefighter dispatch from local fire stations or vertiports can result in more effective operations, and targeted aerial fire suppression and civilian extraction from high-rise buildings could enhance capabilities significantly. There are some challenges that need to be addressed before the identified capabilities and benefits are realized at scale, including the development of firefighting-specific eVTOL vehicles; sense and avoid capabilities in complex, smoke-inhibited environments; autonomous and remote operating capabilities; charging system compatibility and availability; operator and controller training; dynamic airspace management; and vehicle/fleet logistics and support. Acceptance from both the first-responder community and the general public is also critical for the successful implementation of these new capabilities. The purpose of this report is to identify the benefits and challenges of implementation, as well as some of the potential solutions. Based on the rapid development progress of eVTOL aircraft and infrastructures with proactive community engagement, it is envisioned that these challenges can be addressed soon. NOTE: SAE EDGE™ Research Reports are intended to identify and illuminate key issues in emerging, but still unsettled, technologies of interest to the mobility industry. The goal of SAE EDGE™ Research Reports is to stimulate discussion and work in the hope of promoting and speeding resolution of identified issues. These reports are not intended to resolve the challenges they identify or close any topic to further scrutiny.

2020 ◽  
Vol 6 (21) ◽  
pp. eaba4098 ◽  
Author(s):  
Dongliang Chao ◽  
Wanhai Zhou ◽  
Fangxi Xie ◽  
Chao Ye ◽  
Huan Li ◽  
...  

Safety concerns about organic media-based batteries are the key public arguments against their widespread usage. Aqueous batteries (ABs), based on water which is environmentally benign, provide a promising alternative for safe, cost-effective, and scalable energy storage, with high power density and tolerance against mishandling. Research interests and achievements in ABs have surged globally in the past 5 years. However, their large-scale application is plagued by the limited output voltage and inadequate energy density. We present the challenges in AB fundamental research, focusing on the design of advanced materials and practical applications of whole devices. Potential interactions of the challenges in different AB systems are established. A critical appraisal of recent advances in ABs is presented for addressing the key issues, with special emphasis on the connection between advanced materials and emerging electrochemistry. Last, we provide a roadmap starting with material design and ending with the commercialization of next-generation reliable ABs.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Hong Zhang ◽  
Kasra Darabi ◽  
Narges Yaghoobi Nia ◽  
Anurag Krishna ◽  
Paramvir Ahlawat ◽  
...  

AbstractCost management and toxic waste generation are two key issues that must be addressed before the commercialization of perovskite optoelectronic devices. We report a groundbreaking strategy for eco-friendly and cost-effective fabrication of highly efficient perovskite solar cells. This strategy involves the usage of a high volatility co-solvent, which dilutes perovskite precursors to a lower concentration (<0.5 M) while retaining similar film quality and device performance as a high concentration (>1.4 M) solution. More than 70% of toxic waste and material cost can be reduced. Mechanistic insights reveal ultra-rapid evaporation of the co-solvent together with beneficial alteration of the precursor colloidal chemistry upon dilution with co-solvent, which in-situ studies and theoretical simulations confirm. The co-solvent tuned precursor colloidal properties also contribute to the enhancement of the stability of precursor solution, which extends its processing window thus minimizing the waste. This strategy is universally successful across different perovskite compositions, and scales from small devices to large-scale modules using industrial spin-coating, potentially easing the lab-to-fab translation of perovskite technologies.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 809
Author(s):  
Emiliene B. Tata ◽  
Melvin A. Ambele ◽  
Michael S. Pepper

Clinical research in high-income countries is increasingly demonstrating the cost- effectiveness of clinical pharmacogenetic (PGx) testing in reducing the incidence of adverse drug reactions and improving overall patient care. Medications are prescribed based on an individual’s genotype (pharmacogenes), which underlies a specific phenotypic drug response. The advent of cost-effective high-throughput genotyping techniques coupled with the existence of Clinical Pharmacogenetics Implementation Consortium (CPIC) dosing guidelines for pharmacogenetic “actionable variants” have increased the clinical applicability of PGx testing. The implementation of clinical PGx testing in sub-Saharan African (SSA) countries can significantly improve health care delivery, considering the high incidence of communicable diseases, the increasing incidence of non-communicable diseases, and the high degree of genetic diversity in these populations. However, the implementation of PGx testing has been sluggish in SSA, prompting this review, the aim of which is to document the existing barriers. These include under-resourced clinical care logistics, a paucity of pharmacogenetics clinical trials, scientific and technical barriers to genotyping pharmacogene variants, and socio-cultural as well as ethical issues regarding health-care stakeholders, among other barriers. Investing in large-scale SSA PGx research and governance, establishing biobanks/bio-databases coupled with clinical electronic health systems, and encouraging the uptake of PGx knowledge by health-care stakeholders, will ensure the successful implementation of pharmacogenetically guided treatment in SSA.


2018 ◽  
Author(s):  
Lizhen Shi ◽  
Xiandong Meng ◽  
Elizabeth Tseng ◽  
Michael Mascagni ◽  
Zhong Wang

AbstractWhole genome shotgun based next generation transcriptomics and metagenomics studies often generate 100 to 1000 gigabytes (GB) sequence data derived from tens of thousands of different genes or microbial species. De novo assembling these data requires an ideal solution that both scales with data size and optimizes for individual gene or genomes. Here we developed a Apache Spark-based scalable sequence clustering application, SparkReadClust (SpaRC), that partitions the reads based on their molecule of origin to enable downstream assembly optimization. SpaRC produces high clustering performance on transcriptomics and metagenomics test datasets from both short read and long read sequencing technologies. It achieved a near linear scalability with respect to input data size and number of compute nodes. SpaRC can run on different cloud computing environments without modifications while delivering similar performance. In summary, our results suggest SpaRC provides a scalable solution for clustering billions of reads from the next-generation sequencing experiments, and Apache Spark represents a cost-effective solution with rapid development/deployment cycles for similar large scale sequence data analysis problems. The software is available under the Apache 2.0 license at https://bitbucket.org/LizhenShi/sparc.


2020 ◽  
Vol 21 (11) ◽  
pp. 3754 ◽  
Author(s):  
Erdem Bangi

Rapid development of high throughput genome analysis technologies accompanied by significant reduction in costs has led to the accumulation of an incredible amount of data during the last decade. The emergence of big data has had a particularly significant impact in biomedical research by providing unprecedented, systems-level access to many disease states including cancer, and has created promising opportunities as well as new challenges. Arguably, the most significant challenge cancer research currently faces is finding effective ways to use big data to improve our understanding of molecular mechanisms underlying tumorigenesis and developing effective new therapies. Functional exploration of these datasets and testing predictions from computational approaches using experimental models to interrogate their biological relevance is a key step towards achieving this goal. Given the daunting scale and complexity of the big data available, experimental systems like Drosophila that allow large-scale functional studies and complex genetic manipulations in a rapid, cost-effective manner will be of particular importance for this purpose. Findings from these large-scale exploratory functional studies can then be used to formulate more specific hypotheses to be explored in mammalian models. Here, I will discuss several strategies for functional exploration of big cancer data using Drosophila cancer models.


Author(s):  
Simon Thomas

Trends in the technology development of very large scale integrated circuits (VLSI) have been in the direction of higher density of components with smaller dimensions. The scaling down of device dimensions has been not only laterally but also in depth. Such efforts in miniaturization bring with them new developments in materials and processing. Successful implementation of these efforts is, to a large extent, dependent on the proper understanding of the material properties, process technologies and reliability issues, through adequate analytical studies. The analytical instrumentation technology has, fortunately, kept pace with the basic requirements of devices with lateral dimensions in the micron/ submicron range and depths of the order of nonometers. Often, newer analytical techniques have emerged or the more conventional techniques have been adapted to meet the more stringent requirements. As such, a variety of analytical techniques are available today to aid an analyst in the efforts of VLSI process evaluation. Generally such analytical efforts are divided into the characterization of materials, evaluation of processing steps and the analysis of failures.


2018 ◽  
Vol 28 (1) ◽  
pp. 351-356
Author(s):  
Sandra Risteska

Each country strives for growing economic development, but no country is able to implement it. Various experiences and projects from the countries of the European Union and other neighboring countries are taken and considered. Towards the end of the 20th century and at the beginning of the 21st century, economic movements are increasingly relying on public-private partnerships, which can lead to a rapid development process through the financing of infrastructure projects. Economic globalization, as well as the emergence of new opportunities for economic activity in the world, are aimed at cooperation of the authorities and businesses in the realization of the socio-economic policies. The implementation and realization of development projects through public-private partnerships is impossible without participation by the relevant institutions of the public and private sector. Above all, direct participation implies expertise, experience and education. Every project that will be realized through various forms of public-private partnership must fulfill certain conditions. Among the conditions for proper implementation of the project are: dialogue, transparency and monitoring. The main feature of PPP is the transfer of the risk to the financing, efficiency and quality of public services, which are usually the burden of the private partner. This paper analyzes and explores the essence of public-private partnership. The conceptual framework for public-private partnership, as well as its strengths and weaknesses, is set. With the application of PPP, the economic development of the infrastructure as a whole, and in particular the development of local infrastructure, is analyzed. The origin of PPPs, its characteristics, as well as the need and importance for their continuous implementation are explained. The application of PPP is considered through the experiences in certain countries of the European Union and the Republic of Macedonia. Then, the responses to previously hypothesized hypotheses are collected: what is the successful implementation of PPP, what is needed for PPPs and why. In the end, the data from the conducted research are collected, analyzed and determined the profile of certain activities, as well as the possible decisions for further strategies for the implementation of the PPPs.


2009 ◽  
Vol 4 (3) ◽  
Author(s):  
I. Venner ◽  
J. Husband ◽  
J. Noonan ◽  
A. Nelson ◽  
D. Waltrip

In response to rapid population growth as well as to address the nutrient reduction goals for the Chesapeake Bay established by the Virginia Department of Environmental Quality (VDEQ), the Hampton Roads Sanitation District (HRSD) initiated the York River Treatment Plant (YRTP) Expansion Phase 1 project. The existing YRTP is a conventional step-feed activated sludge plant and is rated for an average daily design flow of 57 million liters per day (MLD). This project proposes to expand the existing treatment capacity to 114 MLD and to reduce the nutrients discharged to the York River, a tributary for the Chesapeake Bay. In order to meet the effluent limits set by the VDEQ, a treatment upgrade to limit of technology (LOT) or enhanced nutrient removal (ENR) was required. Malcolm Pirnie worked with HRSD and the VDEQ to develop and evaluate ENR process alternatives to achieve the required effluent limits with the goal of determining the most reliable and cost effective alternative to achieve the aggressive nutrient reduction goals. This paper will highlight the key issues in determining the most desirable treatment process considering both economic and non-economic factors.


Sign in / Sign up

Export Citation Format

Share Document