Effect of l-Glucose and d-Tagatose on Bacterial Growth in Media and a Cooked Cured Ham Product

2000 ◽  
Vol 63 (1) ◽  
pp. 71-77 ◽  
Author(s):  
DERRICK A. BAUTISTA ◽  
RONALD B. PEGG ◽  
PHYLLIS J. SHAND

Cured meats such as ham can undergo premature spoilage on account of the proliferation of lactic acid bacteria. This spoilage is generally evident from a milkiness in the purge of vacuum-packaged sliced ham. Although cured, most hams are at more risk of spoilage than other types of processed meat products because they contain considerably higher concentrations of carbohydrates, ∼2 to 7%, usually in the form of dextrose and corn syrup solids. Unfortunately, the meat industry is restricted with respect to the choice of preservatives and bactericidal agents. An alternative approach from these chemical compounds would be to use novel carbohydrate sources that are unrecognizable to spoilage bacteria. l-Glucose and d-tagatose are two such potential sugars, and in a series of tests in vitro, the ability of bacteria to utilize each as an energy source was compared to that of d-glucose. Results showed that both l-glucose and d-tagatose are not easily catabolized by a variety of lactic bacteria and not at all by pathogenic bacteria such as Escherichia coli O157:H7, Salmonella Typhimurium, Staphylococcus aureus, Bacillus cereus, and Yersinia enterocolitica. In a separate study, d-glucose, l-glucose, and d-tagatose were added to a chopped and formed ham formulation and the rate of bacterial growth was monitored. Analysis of data by a general linear model revealed that the growth rates of total aerobic and lactic acid bacteria were significantly (P < 0.05) slower for the formulation containing d-tagatose than those containing l-or d-glucose. Levels of Enterobacteriaceae were initially low and these bacteria did not significantly (P < 0.20) change in the presence of any of the sugars used in the meat formulations. Compared to the control sample containing d-glucose, the shelf life of the chopped and formed ham containing d-tagatose at 10°C was extended by 7 to 10 days. These results indicate that d-tagatose could deter the growth of microorganisms and inhibit the rate of spoilage in a meat product containing carbohydrates.

2021 ◽  
Vol 31 (4) ◽  
pp. 2
Author(s):  
IDSAP Peramiarti

Diarrhea is defecation with a frequency more often than usual (three times or more) a day (10 mL/kg/day) with a soft or liquid consistency, even in the form of water alone. Pathogenic bacteria, such as Escherichia coli, Salmonella typhimurium, and Shigella sp., play a role in many cases, to which antibiotics are prescribed as the first-line therapy. However, since antibiotic resistance cases are often found, preventive therapies are needed, such as consuming yogurt, which is produced through a fermentation process by lactic acid bacteria (LAB). This research aimed to determine the activity of lactic acid bacteria (Liactobacillus bulgaricus and Streptococcus thermophilus) in yogurt in inhibiting the growth of the pathogenic bacteria E. coli, S. typhimurium, and Shigella sp. The research applied in vitro with the liquid dilution test method and the true experimental design research method with post-test-only and control group design. The design was used to see the inhibitory effect of yogurt LAB on the growth of E. coli, S. typhimurium, and Shigell sp. to compare the effect of several different yogurt concentrations, namely 20%, 40%, 60%, and 80%. The results of the Least Significance Different analysis showed that there was a significant difference between yogurt with a concentration of 0% and that with various concentrations in inhibiting the growth of E. coli, S. typhimurium, and Shigella sp. with a p-value of &lt;0.05. Whereas, there was no significant difference in the various concentrations of yogurt in inhibiting the growth of the three kinds of bacteria with a p-value of &gt; 0.05.<p class="Default" align="center"> </p>


2021 ◽  
Vol 51 (2) ◽  
Author(s):  
Fernanda Cristina Kandalski Bortolotto ◽  
Maria Helena da Rosa Farfan ◽  
Nathalia Cristina Kleinke Jede ◽  
Gabriela Maia Danielski ◽  
Renata Ernlund Freitas de Macedo

ABSTRACT: Sausages are highly susceptible to microbial spoilage. Lactic acid bacteria (LAB) is the main group of spoilage bacteria in vacuum packed cooked sausages. To control microbial growth natural antimicrobials have been used as food preservatives. The aim of this study was to identify strains of lactic acid bacteria isolated from spoiled commercial Calabresa sausages and use them in an in vitro challenge with the natural antimicrobials, nisin (NI) and ε-poly-L-lysine (ε-PL). Mass spectrometry identification of LAB isolated from sausages using MALDI-TOF revealed a predominance of L. plantarum in the LAB population. RAPD-PCR of L. plantarum strains showed four different genetic profiles. Minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of NI and ε-PL, alone and in combination, against a pool of different profiles L. plantarum were determined. MIC of NI and ε-PL were 0.468 mg/ L and 75 mg/ L; respectively, whereas MBC of NI and ε-PL were 12.48 mg/L and 150 mg/L, respectively. The combined effect of NI and ε-PL was determined using concentrations at 1/4 and 1/8 of individual MICs. Synergistic effect was confirmed at both concentrations showing a fractional inhibitory concentration index of 0.5 and 0.2, respectively. The combination of NI and ε-PL at a small concentration of 0.05 mg/L and 9.375 mg/L, respectively, showed inhibitory effect towards spoilage L. plantarum Results show the potential of the combined use of NI and ε-PL to control sausage spoilage-associated with lactobacilli.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Guesh Mulaw ◽  
Tesfaye Sisay Tessema ◽  
Diriba Muleta ◽  
Anteneh Tesfaye

Probiotics are live microorganisms which when consumed in large number together with a food promote the health of the consumer. The aim of this study was to evaluate in vitro probiotic properties of lactic acid bacteria (LAB) isolated from traditional Ethiopian fermented Teff injera dough, Ergo, and Kocho products. A total of 90 LAB were isolated, of which 4 (4.44%) isolates showed 45.35–97.11% and 38.40–90.49% survival rates at pH values (2, 2.5, and 3) for 3 and 6 h, in that order. The four acid-tolerant isolates were found tolerant to 0.3% bile salt for 24 h with 91.37 to 97.22% rate of survival. The acid-and-bile salt-tolerant LAB isolates were found inhibiting some food-borne test pathogenic bacteria to varying degrees. All acid-and-bile-tolerant isolates displayed varying sensitivity to different antibiotics. The in vitro adherence to stainless steel plates of the 4 screened probiotic LAB isolates were ranged from 32.75 to 36.30% adhesion rate. The four efficient probiotic LAB isolates that belonged to Lactobacillus species were identified to the strain level using 16S rDNA gene sequence comparisons and, namely, were Lactobacillus plantarum strain CIP 103151, Lactobacillus paracasei subsp. tolerans strain NBRC 15906, Lactobacillus paracasei strain NBRC 15889, and Lactobacillus plantarum strain JCM 1149. The four Lactobacillus strains were found to be potentially useful to produce probiotic products.


2019 ◽  
Author(s):  
Guesh Mulaw ◽  
Tesfaye Sisay ◽  
Diriba Muleta ◽  
Anteneh Tesfaye

AbstractProbiotics are live microorganisms which when consumed in large number together with a food promote the health of the consumer. The aim of this study was to evaluatein vitroprobiotic properties of lactic acid bacteria (LAB) isolated from traditional Ethiopian fermentedTeff injeradough,ErgoandKochoproducts. A total of 90 LAB were isolated, of which 4 (4.44%) isolates showed 45.35-97.11% and 38.40-90.49% survival rate at pH values (2, 2.5 and 3) for 3 and 6 h in that order. The four acid tolerant isolates were found tolerant to 0.3% bile salt for 24 h with 91.37 to 97.22% rate of survival. The acid-and-bile salt tolerant LAB isolates were found inhibiting some foodborne test pathogenic bacteria to varying degrees. All acid-and-bile tolerant isolates displayed varying sensitivity to different antibiotics. Thein vitroadherence to stainless steel plates of the 4 screened probiotic LAB isolates were ranged from 32.75 to 36.30% adhesion rate. The four efficient probiotic LAB isolates that belonged toLactobacillusspecies were identified to strain level using 16S rDNA gene sequence comparisons and namely wereLactobacillus plantarumstrain CIP 103151,Lactobacillus paracaseisubsp. tolerans strain NBRC 15906,Lactobacillus paracaseistrain NBRC 15889 andLactobacillus plantarumstrain JCM 1149. The fourLactobacillusstrains were found to have potentially useful to produce probiotic products.


2021 ◽  
Vol 15 (01) ◽  
pp. 102-112
Author(s):  
Nazar Hussain ◽  
Muhammad Tariq ◽  
Per Erik Joakim Saris ◽  
Arsalan Zaidi

Introduction: Probiotic and postbiotic potential of thirty-two strains of lactic acid bacteria (LAB), obtained earlier from artisanal dairy sources in Pakistan, have been investigated against major multi-drug resistant (MDR) and food borne pathogenic bacteria. Methodology: LAB strains were identified by 16S rRNA gene sequencing and their antibacterial activity was assessed by the microdilution method. Four LAB isolates, Weissella confusa PL6, Enterococcus faecium PL7, and Lactobacillus delbrueckii PL11 and PL13 were shortlisted. Their ability to degrade lactose and safety for human consumption in terms of hemolysis and antibiotic susceptibility were assessed in vitro. The antibacterial components in the cell-free supernatants (CFSs) of isolate cultures were characterized biochemically by HPLC. Results: Acid neutralization but not protease treatment abolished the antibacterial activity of CFSs. Lactic, acetic and propionic acids were the main acids in the CFSs, and acid production peaked in the stationary phase of growth. The antibacterial activity of the LAB cultures resulted from secretion of organic acids that lowered the pH. The strains exhibited variable ability to degrade lactose and were non-hemolytic and susceptible to the most common antibiotics. Conclusions: These LAB strains are probiotic candidates for further investigation of their postbiotic role in naturally preserving processed foods and for attenuation of lactose intolerance.


2014 ◽  
Vol 60 (5) ◽  
pp. 287-295 ◽  
Author(s):  
Claude P. Champagne ◽  
Yves Raymond ◽  
Yves Pouliot ◽  
Sylvie F. Gauthier ◽  
Martin Lessard

The aim of this study is to evaluate the effects of defatted colostrum (Col), defatted decaseinated colostrum whey, cheese whey, and spray-dried porcine plasma (SDPP) as supplements of a growth medium (de Man – Rogosa – Sharpe (MRS) broth) on the multiplication of lactic acid bacteria, probiotic bacteria, and potentially pathogenic Escherichia coli. Using automated spectrophotometry (in vitro system), we evaluated the effect of the 4 supplements on maximum growth rate (μmax), lag time (LagT), and biomass (ODmax) of 12 lactic acid bacteria and probiotic bacteria and of an E. coli culture. Enrichment of MRS broth with a Col concentration of 10 g/L increased the μmax of 5 of the 12 strains by up to 55%. Negative effects of Col or SDPP on growth rates were also observed with 3 probiotic strains; in one instance μmax was reduced by 40%. The most effective inhibitor of E. coli growth was SDPP, and this effect was not linked to its lysozyme content. The positive effect of enrichment with the dairy-based ingredient might be linked to enrichment in sugars and increased buffering power of the medium. These in vitro data suggest that both Col and SDPP could be considered as supplements to animal feeds to improve intestinal health because of their potential to promote growth of probiotic bacteria and to inhibit growth of pathogenic bacteria such as E. coli.


Author(s):  
Selin Kalkan ◽  
Elçin Taş ◽  
Zerrin Erginkaya ◽  
Emel Ünal Turhan

In this study, it was investigated that the inhibition effect of some lactic acid bacteria (Lactobacillus acidophilus NCC68, Lactobacillus casei Shirota, Lactobacillus rhamnosus (Ezal, commercial starter cultures)) which possessed with probiotic characteristics, against Bacillus cereus, Salmonella Enteritidis, Escherichia coli, Escherichia coli 0157:H7 ATCC 35150 and Staphylococcus aureus ATCC 25923. Besides, the inhibitory effect of probiotic cultures which used with meat and meat product additives that garlic extract over the antagonistic effects of sensitive pathogens were investigated in vitro. Consequently, the whole of lactic acid bacteria and garlic extract which were used in this study, showed inhibition effects against all selected pathogenic bacteria. Staphylococcus aureus ATCC 25923 was determined as the most sensitive pathogenic bacteria while Bacillus cereus was the most resistant bacteria against lactic acid bacteria and garlic extract. There was a distinctive increase in inhibition effects were observed by used of a combination with lactic acid bacteria and garlic extract.


2016 ◽  
Vol 6 (3) ◽  
pp. 77-82
Author(s):  
Happy Nursyam

Fermented sausages are the emulsion product and their stability is strongly determined by protein interaction which acts as an emulsifier along with binder compound in order to form cross-link. Thus the products become compact and resistant to the infection of pathogenic and spoilage bacteria. The current research was aimed to investigate the microbiological character-istics of sausage as the result of carrageenan addition. This descriptive re-search was repeated three times. The result revealed that pH will gradually decrease following to the length of fermentation. At the end of the fermen-tation, the lowest pH (4.84±0.01) found 2.5 % additional carrageenan. Addi-tion of carrageenan 1.25% up to 5% could inhibit the growth of pathogenic bacteria 14th day onwards up to 28th day of fermentation, but not for lactic acid bacteria (LAB). Surprisingly, on the last day of fermentation, carragee-nan did not affecting LAB growth. The growth of LAB on the treatment of 0 to 5 % carrageenan was not significantly different with 6.5134±0.08 and 6.6466±0.14 log CFU/ml, respectively. It is clear that the addition of carra-geenan to the concentration of 5% will only inhibit pathogenic bacteria but not for LAB.


2012 ◽  
Vol 58 (4) ◽  
pp. 463-474 ◽  
Author(s):  
Ouissal Chahad Bourouni ◽  
Monia El Bour ◽  
Pilar Calo-Mata ◽  
Radhia Mraouna ◽  
Boudabous Abedellatif ◽  
...  

The use of lactic acid bacteria (LAB) in the prevention or reduction of fish diseases is receiving increasing attention. In the present study, 47 LAB strains were isolated from farmed seabass ( Dicentrarchus labrax ) and were phenotypically and phylogenetically analysed by 16S rDNA and randomly amplified polymorphic DNA – polymerase chain reaction (RAPD–PCR). Their antimicrobial effect was tested in vitro against a wide variety of pathogenic and spoilage bacteria. Most of the strains isolated were enterococci belonging to the following species: Enterococcus faecium (59%), Enterococcus faecalis (21%), Enterococcus sanguinicola (4 strains), Enterococcus mundtii (1 strain), Enterococcus pseudoavium (1 strain), and Lactococcus lactis (1 strain). An Aerococcus viridans strain was also isolated. The survey of their antimicrobial susceptibility showed that all isolates were sensitive to vancomycin and exhibited resistance to between 4 and 10 other antibiotics relevant for therapy in human and animal medicine. Different patterns of resistance were noted for skin and intestines isolates. More than 69% (32 strains) of the isolates inhibited the growth of the majority of pathogenic and spoilage bacteria tested, including Listeria monocytogenes , Staphylococcus aureus , Aeromonas hydrophila , Aeromonas salmonicida , Vibrio anguillarum , and Carnobacterium sp. To our knowledge, this is the first report of bioactive enterococcal species isolated from seabass that could potentially inhibit the undesirable bacteria found in food systems.


Sign in / Sign up

Export Citation Format

Share Document