First identification and Limited Dissemination of mcr-1 Colistin Resistance in Salmonella Isolates in Jiaxing

Author(s):  
Ping Li ◽  
Li Zhan ◽  
Henghui Wang ◽  
Wenjie Gao ◽  
Lei Gao ◽  
...  

Salmonella , a major foodborne pathogen, causes severe gastrointestinal disease in people and animals worldwide. Plasmid-borne mcr-1 , which confers colistin resistance in Salmonella, has significant epidemiological interest for public health safety. Here, we report the first evidence of mcr-1 -mediated colistin resistance in one multidrug-resistant strain,namely 16062 in this study, from 355 Salmonella isolates collected for Jiaxing foodborne pathogen monitoring in Zhejiang Province in 2015–2019. In addition to colistin, 16062 displayed multidrug resistance to various antimicrobials (β-lactams, quinolone, sulfonamide, florfenicol, ampicillin, streptomycin, nalidixic acid, aminoglycoside, and trimethoprim-sulfamethox). The mcr-1 -carrying IncX4 plasmid (p16062-MCR) in this study shares a conserved structure with other mcr -IncX4 plasmids. We found that other antimicrobial-resistance genes ( aac(6')-Ib-cr , aadA1 , aadA2 , aph(3')-Ia , oqxA , oqxB , sul1 , and cmlA1 ) are located on p16062-cmlA, an atypical IncHI2 plasmid, in isolate 16062. This is the first identification of transferable colistin resistance in foodborne Salmonella isolate collected in Jiaxing city, the 5-year monitoring of which revealed limited dissemination. By determining the genetic features of the plasmid vehicle, the characteristics of transferable mcr genes circulating in isolates from Jiaxing are now clearer.

AMB Express ◽  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Quan Li ◽  
Jian Yin ◽  
Zheng Li ◽  
Zewei Li ◽  
Yuanzhao Du ◽  
...  

AbstractSalmonella is an important food-borne pathogen associated with public health and high economic losses. To investigate the prevalence and the characteristics of Salmonella in a pig slaughterhouse in Yangzhou, a total of 80 Salmonella isolates were isolated from 459 (17.43%) samples in 2016–2017. S. Derby (35/80, 43.75%) was the most prevalent, followed by S. Rissen (16/80, 20.00%) and S. Newlands (11/80, 13.75%). The highest rates of susceptibility were observed to cefoxitin (80/80, 100.0%) and amikacin (80/80, 100.0%), followed by aztreonam (79/80, 98.75%) and nitrofurantoin (79/80, 98.75%). The highest resistance rate was detected for tetracycline (65/80, 81.25%), followed by ampicillin (60/80, 75.00%), bactrim (55/80, 68.75%), and sulfisoxazole (54/80, 67.50%). Overall, 91.25% (73/80) of the isolates were resistant to at least one antibiotic, while 71.25% (57/80) of the isolate strains were multidrug resistant in the antimicrobial susceptibility tested. In addition, 86.36% (19/22) of the 22 antimicrobial resistance genes in the isolates were identified. Our data indicated that the resistance to certain antimicrobials was significantly associated, in part, with antimicrobial resistance genes. Furthermore, 81.25% (65/80) isolates harbored the virulence gene of mogA, of which 2 Salmonella Typhimurium isolates carried the mogA, spvB and spvC virulence genes at the same time. The results showed that swine products in the slaughterhouse were contaminated with multidrug resistant Salmonella commonly, especially some isolates carry the spv virulence genes. The virulence genes might facilitate the dissemination of the resistance genes to consumers along the production chain, suggesting the importance of controlling Salmonella during slaughter for public health.


2011 ◽  
Vol 56 (1) ◽  
pp. 555-558 ◽  
Author(s):  
Sandra K. Urich ◽  
Linda Chalcraft ◽  
Martin E. Schriefer ◽  
Brook M. Yockey ◽  
Jeannine M. Petersen

ABSTRACTYersinia pestisis the causative agent of plague, a fulminant disease that is often fatal without antimicrobial treatment. Plasmid (IncA/C)-mediated multidrug resistance inY. pestiswas reported in 1995 in Madagascar and has generated considerable public health concern, most recently because of the identification of IncA/C multidrug-resistant plasmids in other zoonotic pathogens. Here, we demonstrate no resistance in 392Y. pestisisolates from 17 countries to eight antimicrobials used for treatment or prophylaxis of plague.


2021 ◽  
Vol 11 ◽  
Author(s):  
Feng Zhang ◽  
Shi Wu ◽  
Jiahui Huang ◽  
Runshi Yang ◽  
Jumei Zhang ◽  
...  

Antimicrobial resistance has become a major public health threat. Food-related Staphylococcus species have received much attention due to their multidrug resistance. The cfr gene associated with multidrug resistance has been consistently detected in food-derived Staphylococcus species. In this retrospective study, we examined the prevalence of cfr-positive Staphylococcus strains isolated from poultry meat in different geographical areas of China from 2011 to 2016. Two cfr-positive Staphylococcus delphini strains were identified from poultry meat in China. Comparative and whole-genome analyses were performed to characterize the genetic features and overall antimicrobial resistance genes in the two S. delphini isolates 245-1 and 2794-1. Whole-genome sequencing showed that they both harbored a novel 20,258-bp cfr-carrying Tn558 transposon derivative on their chromosomes. The Tn558 derivative harbors multiple antimicrobial resistance genes, including the transferable multiresistance gene cfr, chloramphenicol resistance gene fexA, aminoglycoside resistance genes aacA-aphD and aadD, and bleomycin resistance gene ble. Surprisingly, within the Tn558 derivative, an active unconventional circularizable structure containing various resistance genes and a copy of a direct repeat sequence was identified by two-step PCR. Furthermore, core genome phylogenetic analysis revealed that the cfr-positive S. delphini strains were most closely related to S. delphini 14S03313-1 isolated from Japan in 2017 and 14S03319-1 isolated from Switzerland in 2017. This study is the first report of S. delphini harboring a novel cfr-carrying Tn558 derivative isolated from retail food. This finding raises further concerns regarding the potential threat to food safety and public health safety. The occurrence and dissemination of similar cfr-carrying transposons from diverse Staphylococcus species need further surveillance.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zengyuan Liu ◽  
Yingqiu Liu ◽  
Wei Xi ◽  
Shuangshi Liu ◽  
Jia Liu ◽  
...  

The genomic context of the mcr-1 gene in Escherichia coli from animal feces has been widely reported. However, less is known about the mcr-1-carrying plasmid characteristics and other functional regions of Escherichia coli isolates from animal organs with lesions. The present study investigated the antimicrobial resistance, population structure, and genetic features of mcr-1-positive Escherichia coli strains isolated from animal organs with lesions. The antimicrobial susceptibility testing indicated that 24 mcr-1-positive Escherichia coli isolates were resistant to at least three or all antimicrobial categories. MLST analysis suggested that the dominant clone complexes (CC) were mainly CC156, CC448, and CC10. In addition, ST10596, a newly discovered sequence type in swine, failed to be classified. Meanwhile, the mcr-1 gene located on the different plasmids was successfully transferred to the recipients, and whole-genome sequencing indicated the mcr-1 gene was embedded in mcr-1-pap2 cassette but not flanked by ISApl1. The mcr-1 gene is located on the chromosome and embedded in Tn6330. Furthermore, NDM-5 was found on the IncX3-type plasmid of J-8. The virB6 and traI gene of type IV secretion system (T4SS) were truncated by IS2 and IS100 and located on the IncX4- and the IncHI2/HI2A/N-type plasmids, respectively. The multidrug-resistant (MDR) region of IncHI2/HI2A/N-type plasmids contained two class 1 integrons (In0, In640) and four composite transposons (Tn4352, Tn6010, cn_4692_IS26, cn_6354_IS26). Overall, 24 mcr-1-positive Escherichia coli isolates in our study showed MDR, or even extensively drug resistant (XDR), and exhibited population diversity. The T4SS gene truncation by the insertion sequence may affect the efficiency of plasmid conjugative transfer. Furthermore, the class 1 integrons and composite transposons in the MDR region of IncHI2/HI2A/n-type plasmid contributed to the multireplicon plasmid formation, the acquisition, and transfer of antimicrobial resistance genes (ARGs).


2020 ◽  
pp. AAC.01193-20
Author(s):  
Willames M. B. S. Martins ◽  
Evelin R. Martins ◽  
Letícia K. de Andrade ◽  
Refath Farzana ◽  
Timothy R. Walsh ◽  
...  

We performed the characterization of a multidrug-resistant (MDR) Enterobacter spp. isolate highlighting the genetic aspects of the antimicrobial resistance genes. An Enterobacter spp. isolate (Ec61) was recovered in 2014 from a transtracheal aspirate sample from a patient admitted to a Brazilian tertiary hospital and submitted to further microbiological and genomic characterization. Ec61 was identified as Enterobacter hormaechei subsp. xiangfangensis ST451, showed a MDR profile and the presence of genes codifying new β-lactamase variants, BKC-2 and ACT-84, and the mobile colistin resistance gene mcr-9.1.


2021 ◽  
Vol 8 ◽  
Author(s):  
Belén González-Santamarina ◽  
Silvia García-Soto ◽  
Sinh Dang-Xuan ◽  
Mostafa Y. Abdel-Glil ◽  
Diana Meemken ◽  
...  

Nontyphoidal Salmonella (NTS) is the most reported cause of bacterial foodborne zoonoses in Vietnam, and contaminated pork is one of the main sources of human infection. In recent years, the prevalence of NTS carrying multiple antimicrobial resistance genes (ARGs) have been increased. The genomic characterization along the pig value chain and the identification of ARGs and plasmids have the potential to improve food safety by understanding the dissemination of ARGs from the farm to the table. We report an analysis of 13 S. Derby and 10 S. Rissen isolates, collected in 2013 at different stages in Vietnamese slaughterhouses and markets. VITEK 2 Compact System was used to characterize the phenotypical antimicrobial resistance of the isolates. In addition, whole-genome sequencing (WGS) was used to detect ARGs and plasmids conferring multidrug resistance. Whole genome single nucleotide polymorphism typing was used to determine the genetic diversity of the strains and the spread of ARGs along the pig value chain. Altogether, 86.9% (20/23) of the samples were resistant to at least one antibiotic. Resistance to ampicillin was most frequently detected (73.9%), followed by piperacillin and moxifloxacin (both 69.6%). At least one ARG was found in all strains, and 69.6% (16/23) were multidrug-resistant (MDR). The observed phenotype and genotype of antimicrobial resistance were not always concordant. Plasmid replicons were found in almost all strains [95.6% (22/23)], and the phylogenetic analysis detected nine clusters (S. Derby, n = 5; S. Rissen, n = 4). ARGs and plasmid content were almost identical within clusters. We found six MDR IncHI1s with identical plasmid sequence type in strains of different genetic clusters at the slaughterhouse and the market. In conclusion, high rates of multidrug resistance were observed in Salmonella strains from Vietnam in 2013. Genomic analysis revealed many resistance genes and plasmids, which have the potential to spread along the pig value chain from the slaughterhouse to the market. This study pointed out that bioinformatics analyses of WGS data are essential to detect, trace back, and control the MDR strains along the pig value chain. Further studies are necessary to assess the more recent MDR Salmonella strains spreading in Vietnam.


2018 ◽  
Vol 12 (05) ◽  
pp. 313-320 ◽  
Author(s):  
Wissal Kalai ◽  
Ilargi Martinez ◽  
Joseba Bikandi ◽  
Lilia Messadi ◽  
Imed Khazri ◽  
...  

Introduction: Salmonella enterica infections are a significant public health concern worldwide, being Salmonella Typhimurium one of the most prevalent serovars. Human salmonellosis is typically associated with the consumption of contaminated foods, such as poultry, eggs and processed meat. The extensive use of antimicrobials in humans and animals has led to an increase in multidrug resistance among Salmonella strains, becoming multidrug-resistant (MDR) strains a major public health concern. Methodology: This study was designed to investigate the antimicrobial susceptibility and the genotypic diversity of Salmonella Typhimurium strains isolated in Tunisia from human and poultry sources from 2009 to 2015. Fortyfive strains were analyzed by disk-diffusion test to determine the antimicrobial susceptibility. The presence of antimicrobial resistance genes was tested by PCR, and genotyping was performed using multiple-locus variable-number tandem repeats analysis (MLVA). Results: About 50% of the strains were resistant to at least 3 antibiotics (multidrug-resistant strains, MDR). The most frequent resistance profile in clinical strains was AMP-TIC-TET-MIN-SXT (n = 7) and TET-MIN in poultry origin strains (n = 7). The MLVA typing grouped the strains in 2 main clusters. Cluster I was mostly formed by human isolates, whereas in cluster II both human and poultry isolates were grouped. Simpson’s diversity index was 0.870 and 0.989 for antimicrobial resistance profiles and MLVA, respectively. Conclusions: Multiresistance is common in Salmonella Typhimurium isolated from human and poultry sources in Tunisia. The genotyping results suggest that some strains isolated from both sources may descend from a common subtype.


2021 ◽  
Vol 19 (3) ◽  
pp. 333-348
Author(s):  
Supaporn Wongsrichai ◽  
◽  
Patchara Phuektes ◽  
Suphattra Jittimanee ◽  
◽  
...  

Food-producing animals are the major reservoir for Salmonella infections in humans. Salmonella contamination and spread of antimicrobial resistance genes can occur during the production chain of animal products. The aims of this study were to investigate antimicrobial resistance patterns and compare the proportions of multidrug resistance and the presence of mobile colistin resistance (mcr) genes, mcr-1, mcr-2 and mcr-3, among Salmonella isolates which were recovered from pork at two different standard practice slaughterhouses and retails during 2014-2017 in Thailand. Salmonella isolates recovered from good standard practice slaughterhouses (GSH, n=75), below standard practice slaughterhouses (BSH, n=75), good standard practice retails (GRT, n=75) and below standard practice retails (BRT, n=75) were examined for their antimicrobial resistance patterns and the existence of mcr-1 to mcr-3 genes. Salmonella strains of the 4 origins showed similar resistance rates to almost all antimicrobial agents tested. BRT origin (33/75, 44%) had slightly higher proportion of MDR Salmonella than the others group with no statistical difference. Five MDR Salmonella isolates carrying the mcr-3 gene were detected among isolates of all origins, while only 4 isolates (1.33%) displayed colistin resistance phenotype (MIC 4-8 ug/mL). This study revealed that MDR Salmonella isolates have widely spread in both standard and low hygiene practice slaughterhouses and retails. This is the first report of mcr-3 positive MDR Salmonella isolates from pork in Thailand. Effective monitoring program in slaughterhouses and retails should be continually implemented to reduce the contamination of MDR Salmonella carrying the mcr gene to consumers.


2014 ◽  
Vol 143 (5) ◽  
pp. 997-1003 ◽  
Author(s):  
S. M. ABD-ELGHANY ◽  
K. I. SALLAM ◽  
A. ABD-ELKHALEK ◽  
T. TAMURA

SUMMARYThis study was undertaken to survey the presence ofSalmonellain 200 chicken samples collected from Mansoura, Egypt.Salmonellawas detected in 16% (8/50), 28% (14/50), 32% (16/50) and 60% (30/50) of whole chicken carcasses, drumsticks, livers and gizzards, respectively, with an overall prevalence of 34% (68/200) among all samples. One hundred and sixty-six isolates were identified biochemically asSalmonella, and confirmed genetically by PCR, based on the presence ofinvAandstngenes. ThespvC gene, however, was detected in only 25·3% (42/166) of the isolates. Isolates were serotyped asSalmonellaEnteritidis (37·3%),S.Typhimurium (30·1%),S.Kentucky (10·8%),S.Muenster (8·4%),S.Virchow (4·8%),S.Anatum (4·8%),S.Haifa (1·2%), and four were non-typable. Antimicrobial susceptibility tests of theSalmonellaisolates revealed that 100% were resistant to each of erythromycin, penicillin, and amoxicillin, while 98·8%, 96·4%, 95·2%, and 91·6% were resistant to nalidixic acid, sulphamethoxazole, oxytetracycline, and ampicillin, respectively. Multidrug resistance was evident for 92·8% of the isolates. The high contamination level of chicken meat with multidrug-resistant Salmonellacan constitute a problem for public health.


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 389
Author(s):  
Zoi Athanasakopoulou ◽  
Martin Reinicke ◽  
Celia Diezel ◽  
Marina Sofia ◽  
Dimitris C. Chatzopoulos ◽  
...  

The prevalence of multidrug resistant, extended spectrum β-lactamase (ESBL)-producing Enterobacteriaceae is increasing worldwide. The present study aimed to provide an overview of the multidrug resistance phenotype and genotype of ESBL-producing Escherichia coli (E. coli) isolates of livestock and wild bird origin in Greece. Nineteen phenotypically confirmed ESBL-producing E. coli strains isolated from fecal samples of cattle (n = 7), pigs (n = 11) and a Eurasian magpie that presented resistance to at least one class of non β-lactam antibiotics, were selected and genotypically characterized. A DNA-microarray based assay was used, which allows the detection of various genes associated with antimicrobial resistance. All isolates harbored blaCTX-M-1/15, while blaTEM was co-detected in 13 of them. The AmpC gene blaMIR was additionally detected in one strain. Resistance genes were also reported for aminoglycosides in all 19 isolates, for quinolones in 6, for sulfonamides in 17, for trimethoprim in 14, and for macrolides in 8. The intI1 and/or tnpISEcp1 genes, associated with mobile genetic elements, were identified in all but two isolates. This report describes the first detection of multidrug resistance genes among ESBL-producing E. coli strains retrieved from feces of cattle, pigs, and a wild bird in Greece, underlining their dissemination in diverse ecosystems and emphasizing the need for a One-Health approach when addressing the issue of antimicrobial resistance.


Sign in / Sign up

Export Citation Format

Share Document