scholarly journals Detection of IoT based DDoS Attacks by Network Traffic Analysis using Feedforward Neural Networks

Author(s):  
Vanya Ivanova ◽  
Tasho Tashev ◽  
Ivo Draganov

In this paper an optimized feedforward neural network model is proposed for detection of IoT based DDoS attacks by network traffic analysis aimed towards a specific target which could be constantly monitored by a tap. The proposed model is applicable for DoS and DDoS attacks which consist of TCP, UDP and HTTP flood and also against keylogging, data exfiltration, OS fingerprint and service scan activities. It simply differentiates such kind of network traffic from normal network flows. The neural network uses Adam optimization as a solver and the hyperbolic tangent activation function in all neurons from a single hidden layer. The number of hidden neurons could be varied, depending on targeted accuracy and processing speed. Testing over the Bot IoT dataset reveals that developed models are applicable using 8 or 10 features and achieved discrimination error of 4.91.10-3%.

2020 ◽  
Author(s):  
Sumit Kumari ◽  
Neetu Sharma ◽  
Prashant Ahlawat

2021 ◽  
pp. 1063293X2110251
Author(s):  
K Vijayakumar ◽  
Vinod J Kadam ◽  
Sudhir Kumar Sharma

Deep Neural Network (DNN) stands for multilayered Neural Network (NN) that is capable of progressively learn the more abstract and composite representations of the raw features of the input data received, with no need for any feature engineering. They are advanced NNs having repetitious hidden layers between the initial input and the final layer. The working principle of such a standard deep classifier is based on a hierarchy formed by the composition of linear functions and a defined nonlinear Activation Function (AF). It remains uncertain (not clear) how the DNN classifier can function so well. But it is clear from many studies that within DNN, the AF choice has a notable impact on the kinetics of training and the success of tasks. In the past few years, different AFs have been formulated. The choice of AF is still an area of active study. Hence, in this study, a novel deep Feed forward NN model with four AFs has been proposed for breast cancer classification: hidden layer 1: Swish, hidden layer, 2:-LeakyReLU, hidden layer 3: ReLU, and final output layer: naturally Sigmoidal. The purpose of the study is twofold. Firstly, this study is a step toward a more profound understanding of DNN with layer-wise different AFs. Secondly, research is also aimed to explore better DNN-based systems to build predictive models for breast cancer data with improved accuracy. Therefore, the benchmark UCI dataset WDBC was used for the validation of the framework and evaluated using a ten-fold CV method and various performance indicators. Multiple simulations and outcomes of the experimentations have shown that the proposed solution performs in a better way than the Sigmoid, ReLU, and LeakyReLU and Swish activation DNN in terms of different parameters. This analysis contributes to producing an expert and precise clinical dataset classification method for breast cancer. Furthermore, the model also achieved improved performance compared to many established state-of-the-art algorithms/models.


Author(s):  
Ayush Bahuguna ◽  
Ankit Agrawal ◽  
Ashutosh Bhatia ◽  
Kamlesh Tiwari ◽  
Deepak Vishwakarma

2012 ◽  
Vol 26 ◽  
pp. 1-15 ◽  
Author(s):  
Juan L. Font ◽  
Daniel Cascado ◽  
José L. Sevillano ◽  
Fernando Díaz del Río ◽  
Gabriel Jiménez

Sign in / Sign up

Export Citation Format

Share Document