scholarly journals Design Radio Network Links to Provide Internet for Pupulation of San Andres de Llamellin-Ancash

Author(s):  
Andres Valencia Acuña ◽  
◽  
Brian Meneses Claudio ◽  
Alexi Delgado

In recent years being able to have access to the internet has become a tool not only to be able to communicate in the distance but it is a great tool to be able to feed knowledge, it is because of them that children have a great educational utility and after this pandemic in Peru it was necessary to close schools, to be able to give remote classes or virtual classes. To solve the problem, we propose to be able to design a network of radio links whereby means of a base station of emission and reception, with an antenna of sectorial type and directional antennas to be able to realize a Point – Multipoint link which will be able to manage the quality of signal by means of a routing with functions of control of speeds for each connection of each home. It was the result that the connections of the radio link at an average distance from the coverage that the network had the signal was better and that the connections that were very far or close to the coverage area had complications, but despite this the connections were sufficient to be able to maintain the virtual classes that is what was planned. It is recommended that for a better connection and complete coverage it would be to reinforce the broadcast base with more sectoral antennas in the network. Keywords- Radio link, Point - Multipoint, Router, Download speed, Upload speed.

2016 ◽  
Vol 7 (3) ◽  
Author(s):  
Setiyo Budiyanto ◽  
Hanifah Diana

Pada saat ini teknologi serat optik menjadi media transmisi yang layak diperhitungkan penggunaannya dalam penyediaan akses karena memiliki kapabilitas dan kapasitas  yang  paling  tinggi  dibandingkan  dengan  media  transmisi  lainnya.  Dalam menyediakan akses informasi dengan volume bandwidth yang besar, serat optik memiliki prospek yang menjanjikan. Akses microwave berbasis sistem multiplexing saat ini mulai digantikan perannya dengan akses serat optik berbasis Internet Protocol (IP) yang disebut dengan Metro Ethernet. Aplikasi  Metro  Ethernet  untuk  akses  ke  menara  Base  Station  Transceiver  (BTS) dan  Radio  Network  Connection  (RNC)  operator  selular  merupakan  salah  satu  tawaran yang  diberikan  oleh  jaringan  Metro  Ethernet  saat  ini.  Penggunaan  Ip  clock  sangat dibutuhkan pada Base Transceiver Station (BTS) untuk sinkronisasi jaringan sebagai jam global yang berasal dari jam GPS diakuisisi oleh sejumlah BTS. IP clock didistribusikan ke pengendali serta acuan  berbagai jaringan, dan dari sana ke jaringan perangkat akses, sehingga  terwujud  sinkronisasi  jaringan  komunikasi  konvergensi  antara  BTS  ke  RNC yang melewati Metro E dengan media transmisi Fiber Optik. Pada penelitian ini, penulis menganalisa permasalahan link BTS dengan IP Clock sebagai alarm monitoring dan kaitannya dengan kesesuaian V-lan pada jaringan tersebut. Perhitungan  dan  analisa  Quality  of  Service  (QOS)  dari  penggunaan  fiber  optik  sebagai media  transmisi  yang  melewati  Metro  E  pada  link  antara  BTS  ke  RNC,  dimana parameter-parameter pandukung yang digunakan seperti Delay, Jitter, Packet Loss, untuk memudahkan dalam mengetahui performansinya.Kata Kunci : Fiber Optik, Metro E, BTS, IP Clock, QoS


2018 ◽  
Vol 7 (2.32) ◽  
pp. 64
Author(s):  
Venkata Vara Prasad Padyala ◽  
Dr K.V.D.Kiran

Cognitive Femtocells have been standardized suitably to the technical framing of the Fourth cohort compact project to place them inside and outside the cell. Cognitive femtocells expand the coverage area and meet the future demands of higher data rates. However, as a result of the massive deployment of cognitive femtocells, users experience additional delay and unnecessary deliveries. The different hand off mechanisms are 1. Hard handover (break before make) 2. Smooth or soft handover (make-before-break). This can seriously affect the quality of service (QoS) of jam sensitive applications, such as Voice over long-term evolution (VoLTE). The 4GPP LTE-A / LTE-UE wireless networks aim to provide uninterrupted movement and rapid transfer pillar for (Real Time) RT and non-RT application services under the giant vigour. The prediction of mobility is an effective technique to identify a domestic NodeB (eNB / HeNB) evolved in the future and improve the overall service quality of the network and satisfy the end user experience. The different hand over mechanisms are, the first sense of a difficult delivery or transfer is one in which an breathe link should be penetrate ahead a unused one is created. The second new 3G technologies use CDMA where it is possible to have adjoining cells at the same frequency and this opens the odds of boast a transfer or transfer from where it is not required to repair the connection. This is called soft transfer, and is defined as a handover in which a not used tie-in is established before the used one is released. The third type of delivery is called smoother delivery or transfer. In this case, a pristine signal is added or deleted from the spry signal group. It can also happen when a signal is replaced by a burly signal from another sector under the base station. This type of transfer is available within UMTS and CDMA2000. “The cognitive femtocell will do in the delivery mechanism is that it will detect the new channel to transmit the data. With this we can avoid the delivery handover mechanism”. This study investigates the role of mobility prediction in reducing the end-to-end delay of VoLTE and the delay of handover under different user equipment (UE) speeds in mixed femtocell and macrocell environments. We propose a mobility based forecasting scheme based on the user path and measurements of the received signal reference signal and the quality reference signal (RSRP / RSRQ) with mixed RT traffic and not RT and then estimated using a network model new. The survey analysis shows that the proposed scheme will reduce the delivery delay by 35% to keep VoLTE at the end of the delay.  


2017 ◽  
Vol 5 (2) ◽  
pp. 9-14
Author(s):  
Muhammad Rizal Azizul Hakim

This study aims to determine the Rx Level value on each floor in the building and determine the omniceiling antenna coverage. Calculation of coverage using the Free Space Loss (FSL) method and measurement with a walk test. Calculation of coverage with the DCS1800 and U2100 networks uses the FSL method to determine the coverage distance per omni ceiling antenna. The result is the farthest distance is 24 meters and the closest distance is 4 meters and the average distance per omni ceiling antenna is 8 meters. As for the results of the walk test on the DCS1800 network, very good results were obtained for the Rx Level value on all floors in the building and for the U2100 network, the results were not good for the Rx Level value on all floors in the building, so it was necessary to evaluate at several points. antenna to improve the quality of the indoor network becomes feasible. In the results of the walk test on the DCS1800 network and the U2100 network, there are several areas in the building that experience bad Rx Level values ??due to poor transmission power so it is necessary to add 1 antenna sector.


2015 ◽  
Vol 2015 ◽  
pp. 1-9
Author(s):  
Hatim Behairy ◽  
Waleed Alrobian ◽  
Adnan Alghammas ◽  
Amr Alasaad ◽  
Brian Suter ◽  
...  

It is often desirable to control mobile phone services in areas where complete silence is either expected or mandatory, including schools, places of worship, hospitals, and prisons. In contrast to conventional techniques, such as jammers or Faraday cages, we present a novel technique to selectively control mobile phone services within a desired area. Our solution enables the area’s keeper to allow mobile phones on a whitelist to freely use mobile services without disruption while denying services to all other mobile phones that are within the boundaries of the desired area to be controlled. Our solution uses a base station controller to identify all mobile devices located within the area to be controlled, while an antenna is placed inside the area to attract all mobile devices in the area to connect to the base station controller. In previous work, we proposed a system that uses directional antennas for the attraction technique. In this work, we show that replacement of the directional antennas with a leaky feeder antenna enables more accurate control of mobile phone services in and around the area to be controlled. Simulations and experiments of the leaky feeder technique confirm its precise control of mobile phone services within the desired areas.


Author(s):  
ARSYAD RAMADHAN DARLIS

ABSTRAKPada kondisi pembangunan suatu jaringan seluler baru, permasalahan coverage area terkadang perlu penanganan khusus. Jika coverage area dari suatu base station terlalu besar maka dapat mengakibatkan saling tumpang tindih (overlap) dengan sel yang berdekatan. Hal ini akan meningkatkan interferensi daya antar sel, yang kemudian berakibat pada penurunan kualitas layanan. Salah satu bentuk solusi untuk dapat memenuhi persyaratan coverage area, kinerja jaringan seluler, dan juga memenuhi tingkat keselamatan engineer adalah dengan menggunakan metoda down tilting antenna melalui wireless. Penetapan metoda down tilting antenna dilakukan dengan membuat suatu peralatan yang dapat menggerakkan posisi antenna pada base station. Perangkat yang diimplementasikan terdiri atas Transmitter, Receiver, Motor DC, Driver Motor, Logam Pengait, dan Antena. Sinyal yang berfungsi sebagai pengendali masuk ke Transmitter dan selanjutnya diolah oleh Receiver. Sinyal keluaran dari Receiver digunakan untuk mengendalikan motor DC melalui driver motor yang mengendalikan pergerakan dari Antenna Base Station. Pada penelitian ini, sistem telah dapat diuji memalui pergerakan antenna sampai dengan jarak 10 m. Tingkat kemiringan antena dibandingkan dengan pergeseran logam berkait menunjukan hasil yang linear. Setiap pergeseran 0,5 cm akan menyebabkan perubahan kemiringan antenna sebesar 1 derajat. Kata kunci: Remote Tilting, Motor DC, Transmitter, Receiver, Base StationABSTRACTOn the state of development of a new mobile network, problem coverage area sometimes need special handling. If the coverage area of a Base Station is too big then it may lead to overlap ( overlap ) with adjacent cells. This will improve inter- cell interference power, which then resulted in a decrease in the quality of service. One form of solutions to meet the requirements of the coverage area, the performance of cellular networks, and also meet the level of safety engineers is to use the method of tilting down through a wireless antenna. Determination method of antenna down tilting is done by creating a device that can move the position of the antenna on Base Station. The device is implemented consisting of Transmitter, Receiver, Motor DC Motor Driver, Metal Hook , and Base Station Antennas. Which serves as a signal controlling entry into Transmitter and subsequently processed by the Receiver. The output signal of the receiver is used to control a DC motor through a motor driver that controls the movement of Base Station Antenna. In this study, the system has to be tested memalui antenna movement up to a distance of 10 m. Levels compared to the friction slope antenna hooked metal has showed linear results. Each shift will lead to a change of 0.5 cm by 1 degree slope antenna.Key words: Remote Tilting, DC Motor, Transmitter, Receiver, Base Station


Author(s):  
V. Lyandres

Introduction:Effective synthesis of а mobile communication network includes joint optimisation of two processes: placement of base stations and frequency assignment. In real environments, the well-known cellular concept fails due to some reasons, such as not homogeneous traffic and non-isotropic wave propagation in the service area.Purpose:Looking for the universal method of finding a network structure close to the optimal.Results:The proposed approach is based on the idea of adaptive vector quantization of the network service area. As a result, it is reduced to a 2D discrete map split into zones with approximately equal number of service requests. In each zone, the algorithm finds such coordinates of its base station that provide the shortest average distance to all subscribers. This method takes into account the shortage of the a priory information about the current traffic, ensures maximum coverage of the service area, and what is not less important, significantly simplifies the process of frequency assignment.


2019 ◽  
Vol 9 (4) ◽  
pp. 43-48
Author(s):  
Rizal Aji Istantowi

4G LTE networks in big cities are already well available. Meanwhile, on small to medium-sized cities, the 4G LTE network is not evenly distributed and maximized. This study chooses the variable tilting antenna to the coverage area, because in sending information from a base station using an antenna. The average RSRP value (dBm) of the existing base station in the calculation with a distance of 200 m is -122.90 dBm, a distance of 500 m is -136.79 dBm, and a distance of 1000 m -147.30 dBm. Meanwhile, in the simulation with a distance of 200 m of -108.22 dBm, a distance of 500 m of -121.81 dBm, and a distance of 1000 m of -132.69 dBm. The coverage area value of the existing base station in the calculation is 5.29%, while in the simulation it is 11.18%. The average RSRP value (dBm) at optimal conditions for calculations at a distance of 200 m is -80.13 dBm, at a distance of 500 m is -94.03 dBm and at a distance of 1000 m is -104.56 dBm. Meanwhile, the simulation at a distance of 200 m is -98.09 dBm, at a distance of 500 m is -112.79 dBm and at a distance of 1000 m is -123.31 dBm. The value of the coverage area for the calculation is 20.32%, while for the simulation it is 15.01%. The current need for base stations in Trenggalek District that has been met is 68%.


2018 ◽  
Vol 14 (11) ◽  
pp. 155014771881109 ◽  
Author(s):  
Pan Zhao ◽  
Lei Feng ◽  
Peng Yu ◽  
Wenjing Li ◽  
Xuesong Qiu

The explosive demands for mobile broadband service bring a major challenge to 5G wireless networks. Device-to-device communication, adopting side links for user-direct communication, is regarded as a main technical source for offloading large volume of mobile traffic from cellular base station. This article investigates the joint power and subcarrier allocation scheme for device-to-device communication in 5G time division duplex systems. In time division duplex system, instead of utilizing an exclusive portion of the precious cellular spectrum, device-to-device pairs reuse the subcarriers occupied by cellular users, thus producing harmful interference to cellular users in both uplink and downlink communication, and strongly limiting the spectrum efficiency of the system. To this end, we focus on the maximization of device-to-device throughput while guaranteeing both uplink and downlink channel quality of service of cellular users as well as device-to-device pairs. The problem is formulated as a mixed integer non-linear programming (MINLP) problem. To make it tractable, we separate the original MINLP problem into two sub problems: power allocation and sub-carrier reusing. The former is to develop optimal power allocation for each device-to-device pair and each cellular user, with the constraints of maximum power and quality of service. It is solved by geometric programming technique in convex optimization method. The latter is derived as a one-to-many matching problem for scheduling multiple subcarriers occupied by cellulars to device-to-device pairs. It is solved by Hungarian method. Simulation results show that the proposed scheme significantly improves system capacity of the device-to-device underlay network, with quality of service of both device-to-device users and cellular users guaranteed.


Sign in / Sign up

Export Citation Format

Share Document