NOVEL APPROACH BASED ON ARTIFICIAL NEURAL NETWORKS (ANN) FOR CONTROLLING THE THREE-PHASE INVERTER OF A PHOTOVOLTAIC SYSTEM

2021 ◽  
Vol 3 (1) ◽  
pp. C21A09-1-C21A09-6
Author(s):  
Daouda Gueye ◽  
◽  
Alphousseyni Ndiaye ◽  
Amadou Diao ◽  
◽  
...  

This paper is devoted to the study of a photovoltaic system connected to the grid. The objective is to provide a novel approach based on artificial neural networks for Controlling the three-phase invelter in order to ensure a flexible injection to unity power factor and low total harmonic dist01tion. A modeling system established mathematical models of the invener and the DC link. A control in the synchronous reference direct and quadratic frame by a neural proportional integral derivative based on back propagation of gradient descent is offered to regulate respectively the dc link voltage and the injected cunents in order to overcome the limitations ofthe experimental tuning (Ziegler-Nichols) of the classical PID controller parameters. Simulation results from the system under the Matlab / Simulink environment prove the efficiency of the proposed method and show that the currents injected have the best sinusoidal fonn with a cunent Total Harmonic Distortion of 0.96 % and a net followed of the dc link voltage.

Author(s):  
Haitham Baomar ◽  
Peter J. Bentley

AbstractWe describe the Intelligent Autopilot System (IAS), a fully autonomous autopilot capable of piloting large jets such as airliners by learning from experienced human pilots using Artificial Neural Networks. The IAS is capable of autonomously executing the required piloting tasks and handling the different flight phases to fly an aircraft from one airport to another including takeoff, climb, cruise, navigate, descent, approach, and land in simulation. In addition, the IAS is capable of autonomously landing large jets in the presence of extreme weather conditions including severe crosswind, gust, wind shear, and turbulence. The IAS is a potential solution to the limitations and robustness problems of modern autopilots such as the inability to execute complete flights, the inability to handle extreme weather conditions especially during approach and landing where the aircraft’s speed is relatively low, and the uncertainty factor is high, and the pilots shortage problem compared to the increasing aircraft demand. In this paper, we present the work done by collaborating with the aviation industry to provide training data for the IAS to learn from. The training data is used by Artificial Neural Networks to generate control models automatically. The control models imitate the skills of the human pilot when executing all the piloting tasks required to pilot an aircraft between two airports. In addition, we introduce new ANNs trained to control the aircraft’s elevators, elevators’ trim, throttle, flaps, and new ailerons and rudder ANNs to counter the effects of extreme weather conditions and land safely. Experiments show that small datasets containing single demonstrations are sufficient to train the IAS and achieve excellent performance by using clearly separable and traceable neural network modules which eliminate the black-box problem of large Artificial Intelligence methods such as Deep Learning. In addition, experiments show that the IAS can handle landing in extreme weather conditions beyond the capabilities of modern autopilots and even experienced human pilots. The proposed IAS is a novel approach towards achieving full control autonomy of large jets using ANN models that match the skills and abilities of experienced human pilots and beyond.


2013 ◽  
Vol 773-774 ◽  
pp. 268-274
Author(s):  
Amir Ghiami ◽  
Ramin Khamedi

This paper presents an investigation of the capabilities of artificial neural networks (ANN) in predicting some mechanical properties of Ferrite-Martensite dual-phase steels applicable for different industries like auto-making. Using ANNs instead of different destructive and non-destructive tests to determine the material properties, reduces costs and reduces the need for special testing facilities. Networks were trained with use of a back propagation (BP) error algorithm. In order to provide data for training the ANNs, mechanical properties, inter-critical annealing temperature and information about the microstructures of many specimens were examined. After the ANNs were trained, the four parameters of yield stress, ultimate tensile stress, total elongation and the work hardening exponent were simulated. Finally a comparison of the predicted and experimental values indicates that the results obtained from the given input data reveal a good ability of the well-trained ANN to predict the described mechanical properties.


2021 ◽  
Author(s):  
Mateus Alexandre da Silva ◽  
Marina Neves Merlo ◽  
Michael Silveira Thebaldi ◽  
Danton Diego Ferreira ◽  
Felipe Schwerz ◽  
...  

Abstract Predicting rainfall can prevent and mitigate damages caused by its deficit or excess, besides providing necessary tools for adequate planning for the use of water. This research aimed to predict the monthly rainfall, one month in advance, in four municipalities in the metropolitan region of Belo Horizonte, using artificial neural networks (ANN) trained with different climate variables, and to indicate the suitability of such variables as inputs to these models. The models were developed through the MATLAB® software version R2011a, using the NNTOOL toolbox. The ANN’s were trained by the multilayer perceptron architecture and the Feedforward and Back propagation algorithm, using two combinations of input data were used, with 2 and 6 variables, and one combination of input data with 3 of the 6 variables most correlated to observed rainfall from 1970 to 1999, to predict the rainfall from 2000 to 2009. The most correlated variables to the rainfall of the following month are the sequential number corresponding to the month, total rainfall and average compensated temperature, and the best performance was obtained with these variables. Furthermore, it was concluded that the performance of the models was satisfactory; however, they presented limitations for predicting months with high rainfall.


2013 ◽  
Vol 14 (6) ◽  
pp. 431-439 ◽  
Author(s):  
Issam Hanafi ◽  
Francisco Mata Cabrera ◽  
Abdellatif Khamlichi ◽  
Ignacio Garrido ◽  
José Tejero Manzanares

2018 ◽  
Vol 11 (2) ◽  
pp. 290-314 ◽  
Author(s):  
Joseph Awoamim Yacim ◽  
Douw Gert Brand Boshoff

Purpose The paper aims to investigate the application of particle swarm optimisation and back propagation in weights optimisation and training of artificial neural networks within the mass appraisal industry and to compare the performance with standalone back propagation, genetic algorithm with back propagation and regression models. Design/methodology/approach The study utilised linear regression modelling before the semi-log and log-log models with a sample of 3,242 single-family dwellings. This was followed by the hybrid systems in the selection of optimal attribute weights and training of the artificial neural networks. Also, the standalone back propagation algorithm was used for the network training, and finally, the performance of each model was evaluated using accuracy test statistics. Findings The study found that combining particle swarm optimisation with back propagation in global and local search for attribute weights enhances the predictive accuracy of artificial neural networks. This also enhances transparency of the process, because it shows relative importance of attributes. Research limitations/implications A robust assessment of the models’ predictive accuracy was inhibited by fewer accuracy test statistics found in the software. The research demonstrates the efficacy of combining two models in the assessment of property values. Originality/value This work demonstrated the practicability of combining particle swarm optimisation with back propagation algorithms in finding optimal weights and training of the artificial neural networks within the mass appraisal environment.


Sign in / Sign up

Export Citation Format

Share Document