scholarly journals Which Pathways Should Indonesia Follow to Achieve Its Energy Development Goals into the Future?

2021 ◽  
Vol 2 (1) ◽  
pp. 108-112
Author(s):  
Hanan Nugroho

Indonesia has developed a plan for its energy sector far into the future, however, the plan might be challenged by several international agreements that the country ratifies.  The UN Report suggests several pathways for Indonesia to achieve the SDGs’ goal number 7 (affordable and clean energy).  It challenges the current plan for expanding city gas networks, instead, it offers extensive uses of the electric cooking stove. It recommends that Indonesia accelerates its energy conservation efforts and reduce its energy sector’s greenhouse gasses emission by a figure which is higher than the original target.   Besides, Indonesia should develop no more new coal-fired power plants and should continue to remove fossil fuel subsidies and encourage the issuance of green financing.  This paper supports but also challenges the report by several arguments based on the country’s energy-economy-environment problems.

2021 ◽  
Vol 234 ◽  
pp. 00087
Author(s):  
Hanna Shevchenko ◽  
Mykola Petrushenko

Transition economies have less ambition to achieve the 2030 Sustainable Development Goals in comparison with developed economies. However, if to compare the benchmarks under Goal 9 “Affordable and clean energy” for Ukraine with the trends of its energy balance, the satisfaction of the relevant ambitions is possible only with a comprehensive approach. Purpose of the study is to analyse the multifaceted innovative intersectoral cooperation and inclusion of energy-tourism projects in the regional socio-economic and ecological programs, in accordance with the reference benchmarks under SDGs in Ukraine. The paper has outlined an approach to activation the relationship between renewable energy and tourism sphere, on the example of solar power plants in the Dnipro region. Implementation of the proposed, in the study, part of the regional program will create opportunities: for tourism sphere – improving the tourist image of the region, increasing in the number of domestic tourists, creating new jobs, increasing in volume of tourist services, increasing in revenues from tourism to regional and local budgets; for renewable energy sphere: also improving an image and information policy, increasing in number of future customers, generating additional income, improving indicators of social and environmental effectivness. The proposals set out in the paper will serve in the future as basis for the development of the ideas of energy-tourism symbiosis within the European Green Deal.


2021 ◽  
Vol 13 (2) ◽  
pp. 821
Author(s):  
Keith L. Kline ◽  
Virginia H. Dale ◽  
Erin Rose ◽  
Bruce Tonn

Wood-based pellets are produced in the southeastern United States (SE US) and shipped to Europe for the generation of heat and power. Effects of pellet production on selected Sustainability Development Goals (SDGs) are evaluated using industry information, available energy consumption data, and published research findings. Challenges associated with identifying relevant SDG goals and targets for this particular bioenergy supply chain and potential deleterious impacts are also discussed. We find that production of woody pellets in the SE US and shipments to displace coal for energy in Europe generate positive effects on affordable and clean energy (SDG 7), decent work and economic growth (SDG 8), industry innovation and infrastructure (SDG 9), responsible consumption and production (SDG 12), and life on land (SDG 15). Primary strengths of the pellet supply chain in the SE US are the provisioning of employment in depressed rural areas and the displacement of fossil fuels. Weaknesses are associated with potential impacts on air, water, and biodiversity that arise if the resource base and harvest activities are improperly managed. The SE US pellet supply chain provides an opportunity for transition to low-carbon industries and innovations while incentivizing better resource management.


2021 ◽  
Vol 13 (16) ◽  
pp. 8789
Author(s):  
Giovanni Bianco ◽  
Barbara Bonvini ◽  
Stefano Bracco ◽  
Federico Delfino ◽  
Paola Laiolo ◽  
...  

As reported in the “Clean energy for all Europeans package” set by the EU, a sustainable transition from fossil fuels towards cleaner energy is necessary to improve the quality of life of citizens and the livability in cities. The exploitation of renewable sources, the improvement of energy performance in buildings and the need for cutting-edge national energy and climate plans represent important and urgent topics to be faced in order to implement the sustainability concept in urban areas. In addition, the spread of polygeneration microgrids and the recent development of energy communities enable a massive installation of renewable power plants, high-performance small-size cogeneration units, and electrical storage systems; moreover, properly designed local energy production systems make it possible to optimize the exploitation of green energy sources and reduce both energy supply costs and emissions. In the present paper, a set of key performance indicators is introduced in order to evaluate and compare different energy communities both from a technical and environmental point of view. The proposed methodology was used in order to assess and compare two sites characterized by the presence of sustainable energy infrastructures: the Savona Campus of the University of Genoa in Italy, where a polygeneration microgrid has been in operation since 2014 and new technologies will be installed in the near future, and the SPEED2030 District, an urban area near the Campus where renewable energy power plants (solar and wind), cogeneration units fed by hydrogen and storage systems are planned to be installed.


Author(s):  
Yifan Wu ◽  
Wei Li ◽  
Deren Sheng ◽  
Jianhong Chen ◽  
Zitao Yu

Clean energy is now developing rapidly, especially in the United States, China, the Britain and the European Union. To ensure the stability of power production and consumption, and to give higher priority to clean energy, it is essential for large power plants to implement peak shaving operation, which means that even the 1000 MW steam turbines in large plants will undertake peak shaving tasks for a long period of time. However, with the peak load regulation, the steam turbines operating in low capacity may be much more likely to cause faults. In this paper, aiming at peak load shaving, a fault diagnosis method of steam turbine vibration has been presented. The major models, namely hierarchy-KNN model on the basis of improved principal component analysis (Improved PCA-HKNN) has been discussed in detail. Additionally, a new fault diagnosis method has been proposed. By applying the PCA improved by information entropy, the vibration and thermal original data are decomposed and classified into a finite number of characteristic parameters and factor matrices. For the peak shaving power plants, the peak load shaving state involving their methods of operation and results of vibration would be elaborated further. Combined with the data and the operation state, the HKNN model is established to carry out the fault diagnosis. Finally, the efficiency and reliability of the improved PCA-HKNN model is discussed. It’s indicated that compared with the traditional method, especially handling the large data, this model enhances the convergence speed and the anti-interference ability of the neural network, reduces the training time and diagnosis time by more than 50%, improving the reliability of the diagnosis from 76% to 97%.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1268
Author(s):  
Angel Valentin Mercedes Garcia ◽  
Petra Amparo López-Jiménez ◽  
Francisco-Javier Sánchez-Romero ◽  
Modesto Pérez-Sánchez

The world is continuously searching for ways to improve how water is used for energy. As the population increases, so do the needs for natural resources and, in turn, the needs for energy. This research sought to show how the world has tried to achieve more sustainable forms of pressurized water distribution and to show the results that have been obtained. In this sense, technologies have been used for the production of clean energy, energy recovery instead of dissipation, reprogramming of pumping stations and hybrid systems. In many cases, much lower water and energy requirements are achieved and, in turn, greenhouse gas emissions related to water use are reduced. Sixty-one different water systems were analyzed considering different energy, economic and environmental indicators. The different operation range of these indicators were defined according to sustainable indicators.


2019 ◽  
Vol 11 (16) ◽  
pp. 4261 ◽  
Author(s):  
Xuerong Li ◽  
Faliang Gui ◽  
Qingpeng Li

The development of clean energy is of great importance in alleviating both the energy crisis and environmental pollution resulting from rapid global economic growth. Hydroelectric generation is considered climate benign, as it neither requires fossil carbon to produce energy nor emits large amounts of greenhouse gases (GHG), unlike conventional energy generation techniques such as coal and oil power plants. However, dams and their associated reservoirs are not entirely GHG-neutral and their classification as a clean source of energy requires further investigation. This study evaluated the environmental impact of the Xiajiang hydropower station based on life cycle assessment (LCA) according to the 2006 Intergovernmental Panel on Climate Change (IPCC) guidelines, focusing specifically on GHG emissions after the submersion of the reservoir. Results reveal that although hydropower is not as clean as we thought, it is still an absolute “low emissions” power type in China. The amount of GHG emissions produced by this station is 3.72 million tons with an emissions coefficient of 32.63 g CO2eq/kWh. This figure is lower than that of thermal power, thus implying that hydropower is still a clean energy resource in China. Our recommendations to further minimize the environmental impacts of this station are the optimization of relevant structural designs, the utilization of new and improved construction materials, and the extension of farmland lifting technology.


1987 ◽  
Vol 257 (3) ◽  
pp. 100-107 ◽  
Author(s):  
Richard E. Balzhiser ◽  
Kurt E. Yeager
Keyword(s):  

2021 ◽  
Vol 73 (07) ◽  
pp. 50-50
Author(s):  
Robello Samuel

How we think about the future of the pipe industry must evolve. How must tubular design and manufacturing change as we transition to clean energy? Geothermal energy is an area that needs attention and, further, needs very specific attention on tubulars. Tubulars are an important component in the construction of geothermal wells, and we must align our requirements for geothermal energy. Some of the main challenges encountered in geothermal wells are corrosion and scaling. Moreover, temperature becomes a major consideration for tubulars, even more so with the temperature excursion during geothermal production. Perhaps the critical aspect in the design of the geothermal wells involves casing selection and design. Beyond manufacturing casing pipes to withstand these problems, considering the manufacturing of other components, such as connections, float collars, and float shoes, also is essential. Thermal expansion and thermal excursion of casings are well-integrity concerns; thus, casing design is important for long-term sustainability of geothermal wells. Apart from thermal simulations, guidelines and software are needed to undergird the designs to withstand not only temperature excursions but also thermomechanical and thermochemical loadings. Engineered nonmetallic casings also provide an alternative solution because they provide the desired strength and corrosion resistance in addition to meeting the goals of sustainability. Undoubtedly, the future of the tubular industry is going to be revitalized. The question now is how we can retrofit existing abandoned wells for this purpose. Recommended additional reading at OnePetro: www.onepetro.org. SPE 199570 - Special Considerations for Well-Tubular Design at Elevated Temperatures by Gang Tao, C-FER Technologies, et al.


2021 ◽  
Author(s):  
Taylor Alicia Lena Marquis

In 2024, all commercial operations at the Pickering Nuclear Generation Station cease and the station will begin its decommissioning process. Ontario Power Generation is currently looking developing a repurposing strategy for the site throughout the decommissioning process, which is expected to be complete by 2064. This project presents a unique opportunity to re-imagine the future of this site, while setting a precedent for the reuse of nuclear sites and facilities once they have reached the end of their life cycle – an issue that will be more prevalent in the coming years. This project proposes a vision for the site to be transformed into parkland using ecological restoration practices, and establishing a Centre for Clean Energy Technology. Using design as a form of research, the project was informed by background research that included a review of existing literature on post-industrial site redevelopment, precedent studies, and site reconnaissance.


Sign in / Sign up

Export Citation Format

Share Document