scholarly journals Removal of Trimethoprim from Water using Carbonized Wood Waste as Adsorbents

Author(s):  
S. A. Adesokan ◽  
A. A. Giwa ◽  
I. A. Bello

Daniellia—oliveri sawdust-based adsorbents were employed to remove trimethoprim (TMP) from water. The sawdust was thermally carbonized and activated in-stu with ZnCl2 and H3PO4 separately. The adsorbents surface features were profiled using scanning electron microscopic (SEM) and pH point of zero charge (pHpzc ) analyses. The prospects of the adsorbents for the removal of trimethoprim from water were verified. The adsorption processes were performed under different experimental conditions. The adsorption isotherm, the kinetics, and the thermodynamics were studied; and the data fitting output revealed that both chemisorptions and physisorption occurred. Surface and pore diffusion played active role in the adsorption of TMP by the adsorbents. The optimum conditions for adsorption of TMP by the adsorbents were pH at slightly acidic to neutral medium and temperature at room temperature. The fitting isotherm models were: Langmuir (R2 = 0.993) for the zinc-chloride-activated-carbon, Temkin (R2 = 0.962) for the phosphoric-acid-activated-carbon, and the kinetics: pseudo-second order (R2 = 0.997) for both. The maximum monolayer adsorption capacities of the adsorbents for TMP was 4.115 and 6.495 mg/g, respectively. The thermodynamic parameters determined suggested feasibility, spontaneity, and endothermicity of the adsorption processes. The results reveal that the adsorbents were goodprospects for the removal of TMP from water.

2020 ◽  
Vol 5 (1) ◽  
pp. 27-35
Author(s):  
Nasir Abdus- Salam ◽  
Abiola Victoria Ikudayisi-Ugbe ◽  
Fabian Audu Ugbe

The adsorption of Methylene Blue (MB) onto Raw Date-palm Seeds (RDS), Thermally Activated Carbon (TAC), Chemically Activated Carbon (CAC), Goethite (GT) and their Composite (COM) were studied using batch equilibrium technique. Variations of sorptive properties such as initial solution concentration, pH, adsorbent dosage, contact time and temperature had a remarkable influence on the adsorption processes. The data fitted well tested isotherm models in the order; Langmuir (R2 = 0.942 and 0.963) > Freundlich (0.886 and 0.948) > Temkin (0.869 and 0.83) for GT and COM respectively. That of CAC and TAC was best described by Freundlich and Langmuir models respectively while RDS showed very poor fittings. Pseudo-second order and film diffusion models best described the adsorption kinetics. The adsorption was feasible, spontaneous (∆G < 0) and exothermic (except MB-CAC with ∆H being positive). The combined results of isotherm, kinetics and thermodynamic studies suggested a combined chemisorptions and physisorptions processes. Also, the kinetic modeling suggested that intra-particle and film diffusions occurred simultaneously and/or in combination with other processes in the mechanism of adsorption.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Murat Erdem ◽  
Suat Ucar ◽  
Selhan Karagöz ◽  
Turgay Tay

The removal of lead (II) ions from aqueous solutions was carried out using an activated carbon prepared from a waste biomass. The effects of various parameters such as pH, contact time, initial concentration of lead (II) ions, and temperature on the adsorption process were investigated. Energy Dispersive X-Ray Spectroscopy (EDS) analysis after adsorption reveals the accumulation of lead (II) ions onto activated carbon. The Langmuir and Freundlich isotherm models were applied to analyze equilibrium data. The maximum monolayer adsorption capacity of activated carbon was found to be 476.2 mg g−1. The kinetic data were evaluated and the pseudo-second-order equation provided the best correlation. Thermodynamic parameters suggest that the adsorption process is endothermic and spontaneous.


2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
C. R. Girish ◽  
V. Ramachandra Murty

The present work investigates the potential of Lantana camara, a forest waste, as an adsorbent for the phenol reduction in wastewater. Batch studies were conducted with adsorbent treated with HCl and KOH to determine the influence of various experimental parameters such as pH, contact time, adsorbent dosage, and phenol concentration. The experimental conditions were optimized for the removal of phenol from wastewater. Equilibrium isotherms for the adsorption of phenol were analyzed by Freundlich, Langmuir, Temkin, and Dubinin-Radushkevich isotherm models. Thermodynamic parameters like the Gibbs free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) were also determined and they showed that the adsorption process was feasible, spontaneous, and exothermic in the temperature range of 298–328 K. The kinetic data were fitted with pseudo-second-order model. The equilibrium data that followed Langmuir model with the monolayer adsorption capacity was found to be 112.5 mg/g and 91.07 mg/g for adsorbent treated with HCl and KOH, respectively, for the concentration of phenol ranging from 25 to 250 mg/L. This indicates that the Lantana camara was a promising adsorbent for the removal of phenol from aqueous solutions.


Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1401 ◽  
Author(s):  
Ricardo Coimbra ◽  
Carla Escapa ◽  
Nadyr Vázquez ◽  
Guillermo Noriega-Hevia ◽  
Marta Otero

In the present work, the adsorptive removal of diclofenac from water by biosorption onto non-living microalgae biomass was assessed. Kinetic and equilibrium experiments were carried out using biomass of two different microalgae strains, namely Synechocystis sp. and Scenedesmus sp. Also, for comparison purposes, a commercial activated carbon was used under identical experimental conditions. The kinetics of the diclofenac adsorption fitted the pseudo-second order equation, and the corresponding kinetic constants indicating that adsorption was faster onto microalgae biomass than onto the activated carbon. Regarding the equilibrium results, which mostly fitted the Langmuir isotherm model, these pointed to significant differences between the adsorbent materials. The Langmuir maximum capacity (Qmax) of the activated carbon (232 mg∙g−1) was higher than that of Scenedesmus sp. (28 mg∙g−1) and of Synechocystis sp. (20 mg∙g−1). In any case, the Qmax values determined here were within the values published in the recent scientific literature on the utilization of different adsorbents for the removal of diclofenac from water. Still, Synechocystis sp. showed the largest KL fitted values, which points to the affinity of this strain for diclofenac at relative low equilibrium concentrations in solution. Overall, the results obtained point to the possible utilization of microalgae biomass waste in the treatment of water, namely for the adsorption of pharmaceuticals.


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3427
Author(s):  
Rachid El Kaim Billah ◽  
Moonis Ali Khan ◽  
Young-Kwon Park ◽  
Amira AM ◽  
Hicham Majdoubi ◽  
...  

Chitosan (Cs)-based composites were developed by incorporating silica (Cs–Si), and both silica and hydroxyapatite (Cs–Si–Hap), comparatively tested to sequester hexavalent (Cr(VI)) ions from water. XRD and FT-IR data affirmed the formation of Cs–Si and Cs–Si–Hap composite. Morphological images exhibits homogeneous Cs–Si surface, decorated with SiO2 nanoparticles, while the Cs–Si–Hap surface was non-homogeneous with microstructures, having SiO2 and Hap nanoparticles. Thermal analysis data revealed excellent thermal stability of the developed composites. Significant influence of pH, adsorbent dose, contact time, temperature, and coexisting anions on Cr(VI) adsorption onto composites was observed. Maximum Cr(VI) uptakes on Cs and developed composites were observed at pH 3. The equilibration time for Cr(VI) adsorption on Cs–Si–Hap was 10 min, comparatively better than Cs and Cs–Si. The adsorption data was fitted to pseudo-second-order kinetic and Langmuir isotherm models with respective maximum monolayer adsorption capacities (qm) of 55.5, 64.4, and 212.8 mg/g for Cs, Cs–Si, and Cs–Si–Hap. Regeneration studies showed that composites could be used for three consecutive cycles without losing their adsorption potential.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
C. A. Cimá-Mukul ◽  
Youness Abdellaoui ◽  
Mohamed Abatal ◽  
Joel Vargas ◽  
Arlette A. Santiago ◽  
...  

Leucaena leucocephala is a potential source of polyphenols widely available in southern Mexico. This work highlights the extraction of polyphenols from Leucaena leucocephala leaves waste (LLEPs) and the evaluation of their efficiency to remove the single and multicomponent Pb(II) and Cd(II) metal ions from aqueous solutions. Batch test conditions were carried out to examine the effects of contact time, initial metal ion concentration, and adsorbent dosage on the biosorption process. The surface textures and the composition of the LLEP biosorbent was characterized using pH of point of zero charge (pHPZC), attenuated total reflectance Fourier transform infrared (ATR-FTIR), and matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry, respectively. Further analysis using ATR-FTIR after adsorption contact of biosorbent was also investigated. The highest Langmuir saturation monolayer adsorption capacity, qm, for the removal of Pb(II) by LLEPs was obtained as 25.51 and 21.55 mg/g in mono- and bimetal solutions, respectively. The pseudo-second-order model provided the best fit for the kinetic data obtained for the removal of Pb(II), Cd(II), and their mixture, and the k2 values depend on the adsorbent mass. This implied that the chemisorption process might be the mechanism of the solute ions-LLEPs interaction in this study. Furthermore, nearly 100% removal of lead and cadmium individually and 95% of their mixture was found using 0.9 g of LLEPs.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Emmanuel Nyankson ◽  
Jonas Adjasoo ◽  
Johnson Kwame Efavi ◽  
Reuben Amedalor ◽  
Abu Yaya ◽  
...  

In this work, zeolite (Z) and Z-Fe3O4 nanocomposite (Z-Fe3O4 NC) have been synthesized. The Fe3O4 nanoparticles were synthesized using the extract from maize leaves and ferric and ferrous chloride salts and encapsulated into the zeolite framework. The nanocomposite (Z-Fe3O4 NC) was characterized using X-ray diffractometer (XRD), Fourier-transform infrared (FT-IR) spectroscopy, energy-dispersive X-ray (EDX) spectroscopy, and scanning electron microscopy (SEM). The potential of Z-Fe3O4 NC as an adsorbent for removing methylene blue molecules (MB) from solution was examined using UV-Vis and kinetic and equilibrium isotherm models. The adsorption data fitted best with the pseudo-second-order model and Weber and Morris model, indicating that the adsorption process was chemisorption, while the Weber and Morris described the rate-controlling steps. The intraparticle diffusion model suggests that the adsorption processes were pore and surface diffusion controlled. The Langmuir isotherm model best describes the adsorption process indicating homogeneous monolayer coverage of MB molecules onto the surface of the Z-Fe3O4 NC. The maximum Langmuir adsorption capacity was 2.57 mg/g at 25°C. The maximum adsorption efficiency was 97.5%. After regeneration, the maximum adsorption efficiency achieved at a pH of 7 was 82.6%.


2017 ◽  
Vol 8 (4) ◽  
pp. 522-531
Author(s):  
A. Machrouhi ◽  
M. Farnane ◽  
A. Elhalil ◽  
R. Elmoubarki ◽  
M. Abdennouri ◽  
...  

Abstract Raw beetroot seeds (BS) and H3PO4 activated beetroot seeds (H3PO4-BS) were evaluate for their effectiveness in removing methylene blue (MB) and malachite green (MG) from aqueous solution. BS were carbonized at 500°C for 2 h, and then impregnated with phosphoric acid (phosphoric acid to BS ratio of 1.5 g/g). The impregnated BS were activated in a tubular vertical furnace at 450°C for 2 h. Batch sorption experiments were carried out under various parameters, such as solution pH, adsorbent dosage, contact time, initial dyes concentration and temperature. The experimental results show that the dye sorption was influenced by solution pH and it was greater in the basic range. The sorption yield increases with an increase in the adsorbent dosage. The equilibrium uptake was increased with an increase in the initial dye concentration in solution. Adsorption kinetic data conformed more to the pseudo-second-order kinetic model. The experimental isotherm data were evaluated by Langmuir, Freundlich, Toth and Dubinin–Radushkevich isotherm models. The Langmuir maximum monolayer adsorption capacities were 61.11 and 74.37 mg/g for MB, 51.31 and 213.01 mg/g for MG, respectively in the case of BS and H3PO4-BS. The thermodynamic parameters are also evaluated and discussed.


2008 ◽  
Vol 5 (4) ◽  
pp. 742-753 ◽  
Author(s):  
M. Sujatha ◽  
A. Geetha ◽  
P. Sivakumar ◽  
P. N. Palanisamy

An Experimental and theoretical study has been conducted on the adsorption of methylene blue dye using activated carbon prepared from babul seed by chemical activation with orthophosphoric acid. BET surface area of the activated carbon was determined as 1060 m2/g. Adsorption kinetics, equilibrium and thermodynamics were investigated as a function of initial dye concentration, temperature and pH. First order Lagergren, pseudo-second order and Elovich kinetic models were used to test the adsorption kinetics. Results were analyzed by the Langmuir, Freundlich and Temkin isotherm models. Based on regression coefficient, the equilibrium data found fitted well to the Langmuir equilibrium model than other models. The characteristics of the prepared activated carbon were found comparable to the commercial activated carbon. It is found that the babul seed activated carbon is very effective for the removal of colouring matter.


2019 ◽  
Vol 25 (5) ◽  
pp. 742-752 ◽  
Author(s):  
Nidhi Yadav ◽  
Dhruv Narayan Maddheshiaya ◽  
Shalu Rawat ◽  
Jiwan Singh

In this study, waste cauliflower leaves were used for adsorbent preparation. The waste cauliflower leaves were converted into activated carbon by pyrolysis at two different temperatures 250˚C and 500˚C with magnetic property. The prepared adsorbents were denoted as CAC-250 and CAC-500 and characterized by the use of scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The adsorbents were applied for the removal of phenol and PNP from their aqueous solutions. The adsorption of phenol was found very less by the application CAC-250, whereas by the application of CAC-500 the adsorption of both phenol and PNP was enhanced. The maximum adsorption of phenol was found 99% and that of PNP was found ~100% using CAC-500, with initial adsorbate concentration 5 mg/L at 25˚C. The adsorption data was analysed with Langmuir, Freundlich and Temkin isotherm models and different kinetic models that are pseudo first order, pseudo second order, Elovich, intraparticle and pore diffusion model.


Sign in / Sign up

Export Citation Format

Share Document