scholarly journals Electronically Tunable TISO Voltage-Mode Universal Filter Using Two LT1228s

Author(s):  
May Phu Pwint Wai ◽  
Winai Jaikla ◽  
Surapong Siripongdee ◽  
Amornchai Chaichana ◽  
Peerawut Suwanjan

This study aims to design an electronically tunable voltage-mode (VM) universal filter utilizing commercially available LT1228 integrated circuits (ICs) with three-input and single-output (TISO) configuration. With the procedure based on two integrator loop filtering structures, the proposed filter consists of two LT1228s, four resistors, and two grounded capacitors. It realizes five filter output responses: low-pass, all-pass, band-reject, band-pass, and high-pass functions. By selecting input voltage signals, each output responses can be achieved without changing the circuit architecture. The natural angular frequency can be controlled electronically. The input voltage nodes Vin1 and Vin3 possess high impedance. The output node has low impedance, so it can be cascaded to other circuits. The performance of the proposed filter is corroborated by PSpice simulation and hardware implementation which support the theoretical assumptions. The result shows that the range of total harmonic distortion (THD) is lower than 1%, and that the higher the temperature is, the lower the natural angular frequency is.

2005 ◽  
Vol 14 (01) ◽  
pp. 159-164 ◽  
Author(s):  
SUDHANSHU MAHESHWARI ◽  
IQBAL A. KHAN

A novel voltage-mode universal filter employing only two current differencing buffered amplifiers (CDBAs) is proposed. The filter uses four inputs and single output to realize six responses, viz. low-pass, high-pass, inverting band-pass, noninverting band-pass, band-elimination, and all-pass through input selection with independent pole-Q control. Computer simulation results using SPICE are also given to verify the theory.


Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2349 ◽  
Author(s):  
San-Fu Wang ◽  
Hua-Pin Chen ◽  
Yitsen Ku ◽  
Yi-Chun Lin

This paper presents a versatile tunable voltage-mode biquadratic filter with five inputs and three outputs. The proposed filter enjoys five single-ended output operational transconductance amplifiers (OTAs) and two grounded capacitors. The filter can be easily transformed into a quadrature oscillator. The filter with grounded capacitors is resistorless and electronically tunable. Either a voltage-mode five-input single-output biquadratic filter or a voltage-mode single-input three-output biquadratic filter can be operated by appropriate selecting input and output terminals. In the operation of five-input single-output biquadratic filter, the non-inverting lowpass, non-inverting bandpass, inverting bandpass, inverting highpass, non-inverting bandreject, inverting bandreject, and non-inverting allpass filtering responses can be realized by appropriately applying the input voltage signals. In the operation of single-input three-output biquadratic filter, the non-inverting/inverting lowpass, bandpass and bandreject filtering responses can be realized simultaneously. The circuit provides independent adjustment of the resonance angular frequency and quality factor, high-input impedance, and no inverting-type input voltage signals are imposed. The application in quadrature oscillator exhibits independent electronic tuning characteristic of the oscillation condition and the oscillation frequency. The theoretical analysis has been verified through OrCAD PSpice and furthermore by experimental measurements.


2019 ◽  
Vol 28 (05) ◽  
pp. 1950078 ◽  
Author(s):  
Montree Kumngern ◽  
Pichai Suksaibul ◽  
Fabian Khateb

This paper presents a new electronically tunable voltage-mode universal filter with four-input one-output employing six simple operational transconductance amplifiers (OTAs), two grounded capacitors and two MOS resistors. The use of grounded passive components is beneficial for integrated circuit implementation. The proposed filter can realize low-pass, band-pass, high-pass, band-stop and all-pass filtering functions without active and passive component-matching conditions and inverting-type input signals requirements. The natural frequency and quality factor can be tuned independently and electronically by adjusting the bias currents. The voltage-mode filter offers the features of high-input impedance and low active and passive sensitivities. The characteristics of the proposed universal filter are verified using PSPICE simulators through 0.35[Formula: see text][Formula: see text]m CMOS process. Experimental results are used to confirm the workability of proposed circuit through LM13600 commercially available OTAs. Also a digitally programmable filter is shown to confirm the advantage of multiple-input universal filter.


2011 ◽  
Vol 20 (03) ◽  
pp. 549-555 ◽  
Author(s):  
A. K. SINGH ◽  
R. SENANI ◽  
D. R. BHASKAR ◽  
R. K. SHARMA

A number of configurations for realizing voltage-mode (VM) biquads using op-amps and OTAs have been presented in the literature, however, none of these provide the following desirable properties simultaneously: (i) realizability of all the five standard filters (namely; low pass, high pass, band pass, band stop and all pass), (ii) tunability of all the three filter parameters (namely; ω0, bandwidth or Q0 and gain) and (iii) not requiring any realization condition in any of the five filter responses. This paper presents a new configuration which does possess all the above mentioned desirable properties simultaneously while using only two internally-compensated type op-amps and a reasonable number of OTAs. The workability of the new configuration has been demonstrated by SPICE simulations based upon CMOS Op-amp and CMOS OTAs.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
K. L. Pushkar ◽  
D. R. Bhaskar ◽  
Dinesh Prasad

A new multiple-input single-output-(MISO-)-type multifunction voltage-mode universal biquadratic filter employing single voltage differencing differential input buffered amplifier (VD-DIBA), two capacitors, and one resistor are proposed. The proposed structure can realize second-order low pass, high pass, band pass, band stop, and all pass filter responses without altering the circuit topology. The proposed new filter configuration also provides the following advantageous features, not available simultaneously in any of the single active device /element-based universal biquad in realizing all the five filter functions known earlier so far: (i) no requirement of any passive component(s) matching condition or inversion of input signal(s), (ii) independent electronic control of angular frequency () and bandwidth (BW), and (iii) low active and passive sensitivities. SPICE simulation results have been included using 0.35 µm TSMC technology to confirm the validity of the proposed new universal biquadratic filter configuration.


2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
Ashish Ranjan ◽  
Sajal K. Paul

This paper proposes a multi-input single-output (MISO) second-order active-C voltage mode (VM) universal filter using two second-generation current-controlled current conveyors (CCCIIs) and two equal-valued capacitors. The proposed circuit realizes low pass, band pass, high pass, all pass, and notch responses from the same topology. The filter uses-minimum number of passive components and no resistor which is suitable for IC Design. The filter enjoys low-sensitivity performance and exhibits electronic and orthogonal tunability of pole frequency () and quality factor () via bias current of CCCIIs. PSPICE simulation results confirm the theory.


2021 ◽  
Vol 11 (2) ◽  
pp. 146-160
Author(s):  
Suvajit Roy ◽  
Tapas Kumar Paul ◽  
Saikat Maiti ◽  
Radha Raman Pal

The objective of this study is to present four new universal biquad filters, two voltage-mode multi-input-single-output (MISO), and two current-mode single-input-multi-output (SIMO). The filters employ one voltage differencing current conveyor (VDCC) as an active element and two capacitors along with two resistors as passive elements. All the five filter responses, i.e., high-pass, low-pass, band-pass, band-stop, and all-pass responses, are obtained from the same circuit topology. Moreover, the pole frequency and quality factor are independently tunable. Additionally, they do not require any double/inverted input signals for response realization. Furthermore, they enjoy low active and passive sensitivities. Various regular analyses support the design ideas. The functionality of the presented filters are tested by PSPICE simulations using TSMC 0.18 µm technology parameters with ± 0.9 V supply voltage. The circuits are also justified experimentally by creating the VDCC block using commercially available OPA860 ICs. The experimental and simulation results agree well with the theoretically predicted results.


Author(s):  
Danupat Duangmalai ◽  
Peerawut Suwanjan

In this research contribution, the electronically tunable first-order universal filter employing a single voltage differencing differential input buffered amplifier (VD-DIBA) (constructed from two commercially available integrated circuit (IC): the operational transconductance amplifier, IC number LT1228, and the differential voltage input buffer, IC number AD830), one capacitor and two resistors. The features of the designed first order universal filter are as follows. Three voltage-mode first-order functions, low-pass (LP), all-pass (AP) and high-pass (HP) responses are given. The natural frequency (𝜔0) of the presented configuration can be electronically adjusted by setting the DC bias current. Moreover, the voltage gain of the LP and HP filters can be controllable. The phase responses of an AP configuration can be varied from 00 to −1800 and 1800 to 00. The power supply voltages were set at ±5 𝑉. Verification of the theoretically described performances of the introduced electronically tunable universal filter was proved by the PSpice simulation and experiment.


2011 ◽  
Vol 20 (04) ◽  
pp. 681-696 ◽  
Author(s):  
HUA-PIN CHEN

A novel versatile three-input five-output universal voltage-mode filter employing two differential difference current conveyors, two grounded capacitors and three resistors is proposed. The proposed configuration can be used as either a single-input five-output or three-input two-output. Unlike the previously reported works, it can simultaneously realize five different generic signals: low-pass, band-pass, high-pass, notch and all-pass. Moreover, the proposed circuit still offers the following advantages: (i) the employment of two grounded capacitors, (ii) no need to employ inverting-type input signals, (iii) no need to impose component choice, (iv) orthogonal control of the resonance angular frequency ωo and the quality factor Q and (v) low active and passive sensitivity performances.


2004 ◽  
Vol 27 (4) ◽  
pp. 215-218 ◽  
Author(s):  
Sudhanshu Maheshwari ◽  
Iqbal A. Khan

A novel cascadable current-mode universal filter employing three current-controlled conveyors (translinear conveyors) and two grounded capacitors is proposed. The circuit with single input and three high-impedance current outputs, ideal for cascading, realizes low-pass, band-pass, and inverting band-reject transfer functions. Inverting high-pass and inverting all-pass transfer functions are obtained by simply connecting the available outputs. The proposed circuit enjoys tuning through external currents, low total harmonic distortion (THD), good dynamic range, attractive sensitivity performance and is ideal for IC implementation.


Sign in / Sign up

Export Citation Format

Share Document