An Intelligent Approach for Intrusion Detection using Convolutional Neural Network

Author(s):  
P. Manoj Kumar ◽  
M. Parvathy ◽  
C. Abinaya Devi

Intrusion Detection Systems (IDS) is one of the important aspects of cyber security that can detect the anomalies in the network traffic. IDS are a part of Second defense line of a system that can be deployed along with other security measures such as access control, authentication mechanisms and encryption techniques to secure the systems against cyber-attacks. However, IDS suffers from the problem of handling large volume of data and in detecting zero-day attacks (new types of attacks) in a real-time traffic environment. To overcome this problem, an intelligent Deep Learning approach for Intrusion Detection is proposed based on Convolutional Neural Network (CNN-IDS). Initially, the model is trained and tested under a new real-time traffic dataset, CSE-CIC-IDS 2018 dataset. Then, the performance of CNN-IDS model is studied based on three important performance metrics namely, accuracy / training time, detection rate and false alarm rate. Finally, the experimental results are compared with those of various Deep Discriminative models including Recurrent Neural network (RNN), Deep Neural Network (DNN) etc., proposed for IDS under the same dataset. The Comparative results show that the proposed CNN-IDS model is very much suitable for modelling a classification model both in terms of binary and multi-class classification with higher detection rate, accuracy, and lower false alarm rate. The CNN-IDS model improves the accuracy of intrusion detection and provides a new research method for intrusion detection.

Author(s):  
Sara Haj Ebrahimi ◽  
Amid Khatibi

Today detection of new threats has become a need for secured communication to provide complete data confidentiality, integrity and availability. Design and development of such an intrusion detection system in the communication world, should not only be new, accurate and fast but also effective in an environment encompassing the surrounding network. In this paper, a new approach is proposed for network anomaly detection by combining neural network and clustering algorithms. We propose a modified Self Organizing Map algorithm which initially starts with null network and grows with the original data space as initial weight vector, updating neighborhood rules and learning rate dynamically in order to overcome the fixed architecture and random weight vector assignment of simple SOM. New nodes are created using distance threshold parameter and their neighborhood is identified using connection strength and its learning rule and the weight vector updating is carried out for neighborhood nodes. The Fuzzy k-means clustering algorithm is employed for grouping similar nodes of Modified SOM into k clusters using similarity measures. Performance of the new approach is evaluated with standard bench mark dataset. The new approach is evaluated using performance metrics such as detection rate and false alarm rate. The result is compared with other individual neural network methods, which shows considerable increase in the detection rate and 1.5% false alarm rate.


Author(s):  
Mingming Fan ◽  
Shaoqing Tian ◽  
Kai Liu ◽  
Jiaxin Zhao ◽  
Yunsong Li

AbstractInfrared small target detection has been a challenging task due to the weak radiation intensity of targets and the complexity of the background. Traditional methods using hand-designed features are usually effective for specific background and have the problems of low detection rate and high false alarm rate in complex infrared scene. In order to fully exploit the features of infrared image, this paper proposes an infrared small target detection method based on region proposal and convolution neural network. Firstly, the small target intensity is enhanced according to the local intensity characteristics. Then, potential target regions are proposed by corner detection to ensure high detection rate of the method. Finally, the potential target regions are fed into the classifier based on convolutional neural network to eliminate the non-target regions, which can effectively suppress the complex background clutter. Extensive experiments demonstrate that the proposed method can effectively reduce the false alarm rate, and outperform other state-of-the-art methods in terms of subjective visual impression and quantitative evaluation metrics.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4916
Author(s):  
Ali Usman Gondal ◽  
Muhammad Imran Sadiq ◽  
Tariq Ali ◽  
Muhammad Irfan ◽  
Ahmad Shaf ◽  
...  

Urbanization is a big concern for both developed and developing countries in recent years. People shift themselves and their families to urban areas for the sake of better education and a modern lifestyle. Due to rapid urbanization, cities are facing huge challenges, one of which is waste management, as the volume of waste is directly proportional to the people living in the city. The municipalities and the city administrations use the traditional wastage classification techniques which are manual, very slow, inefficient and costly. Therefore, automatic waste classification and management is essential for the cities that are being urbanized for the better recycling of waste. Better recycling of waste gives the opportunity to reduce the amount of waste sent to landfills by reducing the need to collect new raw material. In this paper, the idea of a real-time smart waste classification model is presented that uses a hybrid approach to classify waste into various classes. Two machine learning models, a multilayer perceptron and multilayer convolutional neural network (ML-CNN), are implemented. The multilayer perceptron is used to provide binary classification, i.e., metal or non-metal waste, and the CNN identifies the class of non-metal waste. A camera is placed in front of the waste conveyor belt, which takes a picture of the waste and classifies it. Upon successful classification, an automatic hand hammer is used to push the waste into the assigned labeled bucket. Experiments were carried out in a real-time environment with image segmentation. The training, testing, and validation accuracy of the purposed model was 0.99% under different training batches with different input features.


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1375
Author(s):  
Celestine Iwendi ◽  
Joseph Henry Anajemba ◽  
Cresantus Biamba ◽  
Desire Ngabo

Web security plays a very crucial role in the Security of Things (SoT) paradigm for smart healthcare and will continue to be impactful in medical infrastructures in the near future. This paper addressed a key component of security-intrusion detection systems due to the number of web security attacks, which have increased dramatically in recent years in healthcare, as well as the privacy issues. Various intrusion-detection systems have been proposed in different works to detect cyber threats in smart healthcare and to identify network-based attacks and privacy violations. This study was carried out as a result of the limitations of the intrusion detection systems in responding to attacks and challenges and in implementing privacy control and attacks in the smart healthcare industry. The research proposed a machine learning support system that combined a Random Forest (RF) and a genetic algorithm: a feature optimization method that built new intrusion detection systems with a high detection rate and a more accurate false alarm rate. To optimize the functionality of our approach, a weighted genetic algorithm and RF were combined to generate the best subset of functionality that achieved a high detection rate and a low false alarm rate. This study used the NSL-KDD dataset to simultaneously classify RF, Naive Bayes (NB) and logistic regression classifiers for machine learning. The results confirmed the importance of optimizing functionality, which gave better results in terms of the false alarm rate, precision, detection rate, recall and F1 metrics. The combination of our genetic algorithm and RF models achieved a detection rate of 98.81% and a false alarm rate of 0.8%. This research raised awareness of privacy and authentication in the smart healthcare domain, wireless communications and privacy control and developed the necessary intelligent and efficient web system. Furthermore, the proposed algorithm was applied to examine the F1-score and precisionperformance as compared to the NSL-KDD and CSE-CIC-IDS2018 datasets using different scaling factors. The results showed that the proposed GA was greatly optimized, for which the average precision was optimized by 5.65% and the average F1-score by 8.2%.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Jian-ye Yuan ◽  
Xin-yuan Nan ◽  
Cheng-rong Li ◽  
Le-le Sun

Considering that the garbage classification is urgent, a 23-layer convolutional neural network (CNN) model is designed in this paper, with the emphasis on the real-time garbage classification, to solve the low accuracy of garbage classification and recycling and difficulty in manual recycling. Firstly, the depthwise separable convolution was used to reduce the Params of the model. Then, the attention mechanism was used to improve the accuracy of the garbage classification model. Finally, the model fine-tuning method was used to further improve the performance of the garbage classification model. Besides, we compared the model with classic image classification models including AlexNet, VGG16, and ResNet18 and lightweight classification models including MobileNetV2 and SuffleNetV2 and found that the model GAF_dense has a higher accuracy rate, fewer Params, and FLOPs. To further check the performance of the model, we tested the CIFAR-10 data set and found the accuracy rates of the model (GAF_dense) are 0.018 and 0.03 higher than ResNet18 and SufflenetV2, respectively. In the ImageNet data set, the accuracy rates of the model (GAF_dense) are 0.225 and 0.146 higher than Resnet18 and SufflenetV2, respectively. Therefore, the garbage classification model proposed in this paper is suitable for garbage classification and other classification tasks to protect the ecological environment, which can be applied to classification tasks such as environmental science, children’s education, and environmental protection.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Binghao Yan ◽  
Guodong Han

The intrusion detection models (IDMs) based on machine learning play a vital role in the security protection of the network environment, and, by learning the characteristics of the network traffic, these IDMs can divide the network traffic into normal behavior or attack behavior automatically. However, existing IDMs cannot solve the imbalance of traffic distribution, while ignoring the temporal relationship within traffic, which result in the reduction of the detection performance of the IDM and increase the false alarm rate, especially for low-frequency attacks. So, in this paper, we propose a new combined IDM called LA-GRU based on a novel imbalanced learning method and gated recurrent unit (GRU) neural network. In the proposed model, a modified local adaptive synthetic minority oversampling technique (LA-SMOTE) algorithm is provided to handle imbalanced traffic, and then the GRU neural network based on deep learning theory is used to implement the anomaly detection of traffic. The experimental results evaluated on the NSL-KDD dataset confirm that, compared with the existing state-of-the-art IDMs, the proposed model not only obtains excellent overall detection performance with a low false alarm rate but also more effectively solves the learning problem of imbalanced traffic distribution.


Author(s):  
Benhui Xia ◽  
Dezhi Han ◽  
Ximing Yin ◽  
Gao Na

To secure cloud computing and outsourced data while meeting the requirements of automation, many intrusion detection schemes based on deep learn ing are proposed. Though the detection rate of many network intrusion detection solutions can be quite high nowadays, their identification accuracy on imbalanced abnormal network traffic still remains low. Therefore, this paper proposes a ResNet &Inception-based convolutional neural network (RICNN) model to abnormal traffic classification. RICNN can learn more traffic features through the Inception unit, and the degradation problem of the network is eliminated through the direct map ping unit of ResNet, thus the improvement of the model?s generalization ability can be achievable. In addition, to simplify the network, an improved version of RICNN, which makes it possible to reduce the number of parameters that need to be learnt without degrading identification accuracy, is also proposed in this paper. The experimental results on the dataset CICIDS2017 show that RICNN not only achieves an overall accuracy of 99.386% but also has a high detection rate across different categories, especially for small samples. The comparison experiments show that the recognition rate of RICNN outperforms a variety of CNN models and RNN models, and the best detection accuracy can be achieved.


2019 ◽  
Vol 11 (23) ◽  
pp. 2862 ◽  
Author(s):  
Weiwei Fan ◽  
Feng Zhou ◽  
Xueru Bai ◽  
Mingliang Tao ◽  
Tian Tian

Ship detection plays an important role in many remote sensing applications. However, the performance of the PolSAR ship detection may be degraded by the complicated scattering mechanism, multi-scale size of targets, and random speckle noise, etc. In this paper, we propose a ship detection method for PolSAR images based on modified faster region-based convolutional neural network (Faster R-CNN). The main improvements include proposal generation by adopting multi-level features produced by the convolution layers, which fits ships with different sizes, and the addition of a Deep Convolutional Neural Network (DCNN)-based classifier for training sample generation and coast mitigation. The proposed method has been validated by four measured datasets of NASA/JPL airborne synthetic aperture radar (AIRSAR) and uninhabited aerial vehicle synthetic aperture radar (UAVSAR). Performance comparison with the modified constant false alarm rate (CFAR) detector and the Faster R-CNN has demonstrated that the proposed method can improve the detection probability while reducing the false alarm rate and missed detections.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2559 ◽  
Author(s):  
Celestine Iwendi ◽  
Suleman Khan ◽  
Joseph Henry Anajemba ◽  
Mohit Mittal ◽  
Mamdouh Alenezi ◽  
...  

The pursuit to spot abnormal behaviors in and out of a network system is what led to a system known as intrusion detection systems for soft computing besides many researchers have applied machine learning around this area. Obviously, a single classifier alone in the classifications seems impossible to control network intruders. This limitation is what led us to perform dimensionality reduction by means of correlation-based feature selection approach (CFS approach) in addition to a refined ensemble model. The paper aims to improve the Intrusion Detection System (IDS) by proposing a CFS + Ensemble Classifiers (Bagging and Adaboost) which has high accuracy, high packet detection rate, and low false alarm rate. Machine Learning Ensemble Models with base classifiers (J48, Random Forest, and Reptree) were built. Binary classification, as well as Multiclass classification for KDD99 and NSLKDD datasets, was done while all the attacks were named as an anomaly and normal traffic. Class labels consisted of five major attacks, namely Denial of Service (DoS), Probe, User-to-Root (U2R), Root to Local attacks (R2L), and Normal class attacks. Results from the experiment showed that our proposed model produces 0 false alarm rate (FAR) and 99.90% detection rate (DR) for the KDD99 dataset, and 0.5% FAR and 98.60% DR for NSLKDD dataset when working with 6 and 13 selected features.


Sign in / Sign up

Export Citation Format

Share Document