scholarly journals Hepatitis C Virus: Genetic Characteristics, Advances and Current Challenges for Vaccine Development

2020 ◽  
Vol 1 (1) ◽  
pp. 1-13
Author(s):  
Fatih Şahiner ◽  
İlhan Cebeci
2015 ◽  
Vol 2 (3) ◽  
pp. 285-295 ◽  
Author(s):  
Dapeng Li ◽  
Zhong Huang ◽  
Jin Zhong

Abstract Hepatitis C virus (HCV), an enveloped positive-sense single-stranded RNA virus, can cause chronic and end-stage liver diseases. Approximately 185 million people worldwide are infected with HCV. Tremendous progress has been achieved in the therapeutics of chronic hepatitis C thanks to the development of direct-acting antiviral agents (DAAs), but the worldwide use of these highly effective DAAs is limited due to their high treatment cost. In addition, drug-resistance mutations remain a potential problem as DAAs are becoming a standard therapy for chronic hepatitis C. Unfortunately, no vaccine is available for preventing new HCV infection. Therefore, HCV still imposes a big threat to human public health, and the worldwide eradication of HCV is critically dependent on an effective HCV vaccine. In this review, we summarize recent progresses on HCV vaccine development and present our views on the rationale and strategy to develop an effective HCV vaccine.


2021 ◽  
Author(s):  
Nicole E. Skinner ◽  
Clinton O. Ogega ◽  
Nicole Frumento ◽  
Kaitlyn E. Clark ◽  
Srinivasan Yegnasubramanian ◽  
...  

AbstractEarly development of broadly neutralizing antibodies (bNAbs) targeting the hepatitis C virus (HCV) envelope glycoprotein E2 is associated with spontaneous clearance of infection, so induction of bNAbs is a major goal of HCV vaccine development. However, much remains to be learned at a molecular level about protective E2-reactive antibodies, since HCV infection persists in some individuals despite early development of broadly neutralizing plasma. To examine B cell repertoire features associated with broad neutralization and viral clearance, we performed RNA sequencing of the B cell receptors (BCRs) of HCV E2-reactive B cells of people with cleared or persistent HCV, including subjects with high or low plasma neutralizing breadth in both clearance and persistence groups. We identified many E2-reactive public BCR clonotypes, which are antibody clones with the same V and J-genes and identical CDR3 sequences, shared among subjects grouped by either clearance or neutralization status. The majority (89) of these public clonotypes were shared by two subjects with broad plasma neutralizing activity and cleared infection, but not found in subjects with high plasma neutralizing breadth and persistent infection. We cloned a potent, cross-reactive neutralizing monoclonal antibody (mAb) by pairing the most abundant public heavy and light chains from these two subjects, providing evidence that broadly E2-reactive public clonotypes arise in a subset of individuals with broadly neutralizing plasma and spontaneous clearance of infection. Further characterization of the molecular features and function of these antibodies can inform HCV vaccine development.


2008 ◽  
Vol 82 (12) ◽  
pp. 6067-6072 ◽  
Author(s):  
Zhen-Yong Keck ◽  
Oakley Olson ◽  
Meital Gal-Tanamy ◽  
Jinming Xia ◽  
Arvind H. Patel ◽  
...  

ABSTRACT A challenge in hepatitis C virus (HCV) vaccine development is defining conserved protective epitopes. A cluster of these epitopes comprises an immunodominant domain on the E2 glycoprotein, designated domain B. CBH-2 is a neutralizing human monoclonal antibody to a domain B epitope that is highly conserved. Alanine scanning demonstrated that the epitope involves residues G523, G530, and D535 that are also contact residues for E2 binding to CD81, a coreceptor required for virus entry into cells. However, another residue, located at position 431 and thus at a considerable distance in the linear sequence of E2, also contributes to the CBH-2 epitope. A single amino acid substitution at this residue results in escape from CBH-2-mediated neutralization in a genotype 1a virus. These results highlight the challenges inherent in developing HCV vaccines and show that an effective vaccine must induce antibodies to both conserved and more invariant epitopes to minimize virus escape.


Vaccines ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 313
Author(s):  
Daniel Sepulveda-Crespo ◽  
Salvador Resino ◽  
Isidoro Martinez

Despite successful treatments, hepatitis C virus (HCV) infections continue to be a significant world health problem. High treatment costs, the high number of undiagnosed individuals, and the difficulty to access to treatment, particularly in marginalized susceptible populations, make it improbable to achieve the global control of the virus in the absence of an effective preventive vaccine. Current vaccine development is mostly focused on weakly immunogenic subunits, such as surface glycoproteins or non-structural proteins, in the case of HCV. Adjuvants are critical components of vaccine formulations that increase immunogenic performance. As we learn more information about how adjuvants work, it is becoming clear that proper stimulation of innate immunity is crucial to achieving a successful immunization. Several hepatic cell types participate in the early innate immune response and the subsequent inflammation and activation of the adaptive response, principally hepatocytes, and antigen-presenting cells (Kupffer cells, and dendritic cells). Innate pattern recognition receptors on these cells, mainly toll-like receptors, are targets for new promising adjuvants. Moreover, complex adjuvants that stimulate different components of the innate immunity are showing encouraging results and are being incorporated in current vaccines. Recent studies on HCV-vaccine adjuvants have shown that the induction of a strong T- and B-cell immune response might be enhanced by choosing the right adjuvant.


2009 ◽  
Vol 11 (4) ◽  
pp. 313-325 ◽  
Author(s):  
Delphine Desjardins ◽  
Christophe Huret ◽  
Charlotte Dalba ◽  
Florian Kreppel ◽  
Stefan Kochanek ◽  
...  

2012 ◽  
Vol 13 (12) ◽  
pp. 5917-5935 ◽  
Author(s):  
Hossein Keyvani ◽  
Mehdi Fazlalipour ◽  
Seyed Hamid Reza Monavari ◽  
Hamid Reza Mollaie

2004 ◽  
Vol 78 (3) ◽  
pp. 1575-1581 ◽  
Author(s):  
Robert E. Lanford ◽  
Bernadette Guerra ◽  
Deborah Chavez ◽  
Catherine Bigger ◽  
Kathleen M. Brasky ◽  
...  

ABSTRACT Recent studies in humans and chimpanzees suggest that immunity can be induced to diminish the incidence of chronic hepatitis C virus (HCV) infection. However, the immunity that promotes viral recovery is poorly understood, and whether the breadth of this adaptive immunity is sufficient to overcome the substantial intergenotype antigenic diversity represents a final obstacle to demonstrating the feasibility of vaccine development. Here we demonstrate that recovery from a genotype 1 HCV infection protects chimpanzees against infection with representatives of other genotypes that exhibit up to 30% divergence at the amino acid level, including challenges with genotype 4, a mixture of genotypes 2 and 3, and a complex inoculum containing genotypes 1, 2, 3, and 4. In each instance, the level and duration of viremia were markedly reduced in comparison to the primary infection in the same animal. The data indicate that epitopes conserved between genotypes must play an essential role in immunity. The inocula used in the rechallenge studies induced typical primary infection profiles in naïve chimpanzees. Rechallenge infections were associated with rapid increases in the intrahepatic transcripts of interferon-stimulated genes, even in animals exhibiting apparent sterilizing immunity. Protective immunity was often associated with an early increase in gamma interferon transcripts in the liver and increases in intrahepatic transcripts of Mig, a T-cell chemokine that is a gamma interferon response gene. These studies are the first to show that cross-genotype immunity can be induced to HCV, demonstrating the feasibility of developing a vaccine protective against all HCV strains.


1998 ◽  
Vol 72 (5) ◽  
pp. 3827-3836 ◽  
Author(s):  
Thomas F. Baumert ◽  
Susumu Ito ◽  
David T. Wong ◽  
T. Jake Liang

ABSTRACT Hepatitis C virus (HCV) is a leading cause of chronic hepatitis in the world. The study of HCV has been hampered by the low level of viral particles in infected individuals, the inability to propagate efficiently the virus in cultured cells, and the lack of a convenient animal model. Due to these obstacles, neither the structure of the virus nor the prerequisites for its assembly have been clearly defined. In this report, we describe a model for the production and purification of HCV-like particles in insect cells using a recombinant baculovirus containing the cDNA of the HCV structural proteins. In insect cells, expressed HCV structural proteins assembled into enveloped viruslike particles (40 to 60 nm in diameter) in large cytoplasmic cisternae, presumably derived from the endoplasmic reticulum. Biophysical characterization of viruslike particles by CsCl and sucrose gradient centrifugation revealed biophysical properties similar to those of putative virions isolated from infected humans. The results suggested that HCV core and envelope proteins without p7 were sufficient for viral particle formation. Analysis of particle-associated nucleic acids demonstrated that HCV RNAs were selectively incorporated into the particles over non-HCV transcripts. The synthesis of HCV-like particles in insect cells may provide an important tool to determine the structural requirements for HCV particle assembly as well as to study viral genome encapsidation and virus-host interactions. The described system may also represent a potential approach toward vaccine development.


Sign in / Sign up

Export Citation Format

Share Document