Pfizer buys into next-generation gene editing in $300 million deal with Beam Therapeutics

2022 ◽  
pp. 10-10
Author(s):  
Asher Mullard, special to C&EN
Keyword(s):  
2018 ◽  
Vol 215 (3) ◽  
pp. 985-997 ◽  
Author(s):  
Akiko Seki ◽  
Sascha Rutz

CRISPR (clustered, regularly interspaced, short palindromic repeats)/Cas9 (CRISPR-associated protein 9) has become the tool of choice for generating gene knockouts across a variety of species. The ability for efficient gene editing in primary T cells not only represents a valuable research tool to study gene function but also holds great promise for T cell–based immunotherapies, such as next-generation chimeric antigen receptor (CAR) T cells. Previous attempts to apply CRIPSR/Cas9 for gene editing in primary T cells have resulted in highly variable knockout efficiency and required T cell receptor (TCR) stimulation, thus largely precluding the study of genes involved in T cell activation or differentiation. Here, we describe an optimized approach for Cas9/RNP transfection of primary mouse and human T cells without TCR stimulation that results in near complete loss of target gene expression at the population level, mitigating the need for selection. We believe that this method will greatly extend the feasibly of target gene discovery and validation in primary T cells and simplify the gene editing process for next-generation immunotherapies.


2021 ◽  
Vol 27 (3) ◽  
pp. S186-S187
Author(s):  
Christina Pham ◽  
Tassja Spindler ◽  
Edward Hwang ◽  
Alfonso Brito ◽  
Yannick Bulliard ◽  
...  
Keyword(s):  

Cancer ◽  
2019 ◽  
Vol 125 (16) ◽  
pp. 2719-2719
Author(s):  
Carrie Printz
Keyword(s):  

HemaSphere ◽  
2019 ◽  
Vol 3 (S1) ◽  
pp. 551
Author(s):  
P.A. Sotiropoulou ◽  
A. Michaux ◽  
S. Raitano ◽  
S. Bornschein ◽  
J. Bolsée ◽  
...  
Keyword(s):  
T Cell ◽  

Cells ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 2095 ◽  
Author(s):  
Lena Gaissmaier ◽  
Mariam Elshiaty ◽  
Petros Christopoulos

Immune checkpoint inhibitors have redefined the treatment of cancer, but their efficacy depends critically on the presence of sufficient tumor-specific lymphocytes, and cellular immunotherapies develop rapidly to fill this gap. The paucity of suitable extracellular and tumor-associated antigens in solid cancers necessitates the use of neoantigen-directed T-cell-receptor (TCR)-engineered cells, while prevention of tumor evasion requires combined targeting of multiple neoepitopes. These can be currently identified within 2 weeks by combining cutting-edge next-generation sequencing with bioinformatic pipelines and used to select tumor-reactive TCRs in a high-throughput manner for expeditious scalable non-viral gene editing of autologous or allogeneic lymphocytes. “Young” cells with a naive, memory stem or central memory phenotype can be additionally armored with “next-generation” features against exhaustion and the immunosuppressive tumor microenvironment, where they wander after reinfusion to attack heavily pretreated and hitherto hopeless neoplasms. Facilitated by major technological breakthroughs in critical manufacturing steps, based on a solid preclinical rationale, and backed by rapidly accumulating evidence, TCR therapies break one bottleneck after the other and hold the promise to become the next immuno-oncological revolution.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 9-9
Author(s):  
C Pham ◽  
T Spindler ◽  
E Hwang ◽  
A Brito ◽  
Y Bulliard ◽  
...  

INTRODUCTION The development of allogeneic CD19 chimeric antigen receptor (CAR) T cells from healthy donors is a significant focus in cell therapy and is anticipated to overcome the technical and logistical challenges associated with autologous CAR-T cells. Unlike gene-edited approaches, which require inactivation of the endogenous αβ T cell receptor to reduce the risk of Graft-versus-Host Disease (GvHD), allogeneic Epstein-Barr Virus (EBV)-targeted T cells represent a clinically-advanced treatment modality that, to-date, has demonstrated a favorable safety profile with limited risks of GvHD or cytokine release syndrome [Prockop et al. JCI, 2020; Prockop et al. Blood, 2019] . As an allogeneic CAR T cell platform, EBV T cells represent a unique composition that retains critical transducibility and function, and minimizes risks for GvHD and other host interactions, without requiring complex gene editing or other cell engineering approaches to facilitate use in the allogeneic setting. Recent clinical experience with allogeneic CD19 CAR-modified EBV T cells have further supported safe and effective clinical experience in the context of B cell malignancies [Curran KJ et al. TCT 2020]. Recent advances in next-generation stimulatory domains also represent potential for improvement on current CAR-T therapies. Specifically, a modified CD3ζ domain retaining signaling capacity in 1 of 3 immune-receptor-tyrosine-based-activation-motif (ITAM) regions (referred to as 1XX) is designed to extend functional persistence without compromising potency via calibration of antigen induced CAR signaling intensity to more physiologic levels [Feucht et al. Science Trans Med 2018]. Here, we describe the first preclinical evaluation of ATA3219, a next-generation allogeneic CD19 CAR T cell therapy, combining a non-edited allogeneic EBV T cell approach with a CAR signaling domain designed to improve upon the currently clinically validated CD19 targeted CAR therapies. METHODS and RESULTS We generated EBV T cells engineered with a CD19-targeted CAR containing a modified CD3ζ signaling domain, 1XX (CD19-1XX CAR+ EBV T cells). CD19-1XX CAR+ EBV T cells demonstrate high CAR expression, polyfunctionality, expansion and in vitro potency through HLA-independent killing of CD19+ targets. Furthermore, CD19-1XX CAR+ EBV T cells demonstrate highly potent antitumor activity in an established disseminated tumor model of acute lymphoblastic leukemia and is associated with long-term persistence of the product. No treatment-related toxicities were observed in this animal model. CONCLUSIONS This preclinical dataset for CD19-1XX CAR+ EBV T cells demonstrate, persistence, polyfunctional phenotype and efficient targeting of CD19-expressing tumor cells, both in vitro and in vivo, with limited allocytoxicity against antigen-negative, HLA-mismatched targets. These findings support advancing ATA3219 to clinical evaluation. Disclosures Pham: Atara Biotherapeutics: Current Employment, Current equity holder in publicly-traded company. Spindler:Atara Biotherapeutics: Current Employment, Current equity holder in publicly-traded company. Hwang:Atara Biotherapeutics: Current Employment, Current equity holder in publicly-traded company. Brito:Atara Biotherapeutics: Current Employment, Current equity holder in publicly-traded company. Bulliard:Atara Biotherapeutics: Current Employment, Current equity holder in publicly-traded company. Aftab:Atara Biotherapeutics: Current Employment, Current equity holder in publicly-traded company.


2019 ◽  
Vol 20 (17) ◽  
pp. 4257 ◽  
Author(s):  
Shujuan Zhang ◽  
Rongzhi Zhang ◽  
Jie Gao ◽  
Tiantian Gu ◽  
Guoqi Song ◽  
...  

The CRISPR/Cas9 system has been successfully used in hexaploid wheat. Although it has been reported that the induced mutations can be passed to the next generation, gene editing and transmission patterns in later generations still need to be studied. In this study, we demonstrated that the CRISPR/Cas9 system could achieve efficient mutagenesis in five wheat genes via Agrobacterium-mediated transformation of an sgRNA targeting the D genome, an sgRNA targeting both the A and B homologues and three tri-genome guides targeting the editing of all three homologues. High mutation rates and putative homozygous or biallelic mutations were observed in the T0 plants. The targeted mutations could be stably inherited by the next generation, and the editing efficiency of each mutant line increased significantly across generations. The editing types and inheritance of targeted mutagenesis were similar, which were not related to the targeted subgenome number. The presence of Cas9/sgRNA could cause new mutations in subsequent generations, while mutated lines without Cas9/sgRNA could retain the mutation type. Additionally, off-target mutations were not found in sequences that were highly homologous to the selected sgRNA sequences. Overall, the results suggested that CRISPR/Cas9-induced gene editing via Agrobacterium-mediated transformation plays important roles in wheat genome engineering.


Sign in / Sign up

Export Citation Format

Share Document