scholarly journals Enhancing the aesthetic aspect of the solar systems used as facades for building by designing multi-layer optical coatings

Author(s):  
Zainab I. AL-Assadi ◽  
Fawzia Irhayyim AL-Assadi

The design of zero-energy buildings can be depending on the effective integration of solar energy systems with building envelopes, where these systems save heat and electricity as well as enhance the aesthetic aspect of the facades. In this paper, the aspects related to the effective integration of buildings with solar energy systems (solar cells and collectors) will be discussed, as well as enhancing the aesthetic aspect of the facades, and since solar energy systems are visible to everyone, their design must adapt to the building structure and the surrounding environment. Solar energy system designers, architects, physicists and other contributors to building energy envelopes must consider the comprehensive concept of it, where buildings are part of the human and social environment and in close relationship with the natural environment, through the use of thin films technology through the design of multi-layers colored optical coatings covering solar panels for building facades. Accordingly, the energy sector should be seen as an area of aesthetic creativity. Two dielectric materials were used, the first is ThF4 with a high refractive index (1.5143) and the second is LiF with a low refractive index (1.393) and for several odd layers, starting from 3 layers and up to 21 layers and for a thicknesses of a quarter wavelength. The design Air/L/H/Glass was applied by the Mat Lab program for the seven colors of the spectrum, So, the aim of this research is determined in designing colored optical coatings for solar systems that enhance the aesthetic aspect of building facades, as well as generating thermal and electrical energy needed to operate the buildings and to find out which color has the best visible reflectivity and solar transmittance better than the rest of the spectrum, all the results exhibit that yellow color has the higher visible reflectivity and higher merit factor, so it is consider the most efficient color for coloring the solar systems than the rest of colors spectrum.

Author(s):  
Zainab I. AL-Assadi ◽  
Fawzia Asadi ◽  
Ban M. Alameri

The Building design in a correct way and totalitarian requires integration of using solar energy technologies in the architectural design stage of the roofs and facades as the most appropriate places to obtain solar energy because it greatly affects the architectural aesthetic. This integration has to be taken into account at the design stage, which leads to effective and attractive solutions. Architecture needs the energy to complete its functions to increases human effectiveness and ability to do its tasks better, solar energy is the main factor of providing the necessary energy due to its abundance as well as being clean energy and does not cause polluting emissions to the environment. To provide a comfortable indoor environment for the occupants, Solar Thermal Collectors (STC) and Photovoltaics Cells (PV) used, which convert solar energy into thermal energy and electrical energy, respectively. The main problem of this study is concerning with the problems of the black color, visible tubes, metallic strip gradients (absorption strip), and welding points of the solar systems which gives the facades of the buildings an undesirable view and weakens the aesthetic aspect of the buildings and limits the abilities of architects to use because of their black color and undesirable aspect. The aim of this study is a design of optical interference filter (multilayer coatings) prepared by RF magnetron sputtering as a solution to the problem of black color, visible tubes, metallic strip gradients (absorption strip), and welding points in solar thermal collectors and photovoltaic cells, which are the main reasons for not using solar systems as building facades, this technique works to increase the efficiency of the solar systems and increase the amount of clean energy generated, also enhancing the expressive and aesthetic aspect of facades of buildings. In the NIR region this filter works as an anti-reflective coating. Also the coating includes a high color reflection at a certain wavelength in the VIS region to give the solar system an aesthetic feature, which is used as building facades by using appropriate dielectric substances with high and low reflective indexes likes SiO2 and MgF2 respectively. The results of the study showed that the increase in the number of layers will lead to an increase in the visible reflectivity peak, while near of infrared region remains an anti-reflective with a high Transmission of solar rays, thus increasing solar systems efficiency.


2022 ◽  
Vol 7 ◽  
pp. 7
Author(s):  
Karol Bot ◽  
Laura Aelenei ◽  
Maria da Glória Gomes ◽  
Carlos Santos Silva

The building façade has a crucial role in acting as the interface between the environment and the indoor ambient, and from an engineering and architecture perspective, in the last years, there has been a growing focus on the strategic development of building façades. In this sense, this work aims to present a literature review for the Building Integrated Solar Energy Systems (BI-SES) for façades, subdivided into three categories: thermal, photovoltaic and hybrid (both thermal and photovoltaic). The methodology used corresponds to a systematic review method. A sample of 75 works was reviewed (16 works on thermal BI-SES, 37 works on photovoltaic BI-SES, 22 works on hybrid BI-SES). This article summarises the works and later classifies them according to the type of study (numerical or experimental), simulation tool, parametric analysis and performance when applied.


1979 ◽  
Vol 42 (7) ◽  
pp. 604-605
Author(s):  
HARLIN A. FIENE

Dairymen now have an alternative source of energy to assist them in efficient production of milk. Solar energy is being used to heat water and to space-heat milk houses and milking parlors. Used in conjunction with standard heating systems, solar systems can supply from 30 to 70% of the water- and space-heating requirements on a dairy farm. Tax incentives and rising costs of electricity and fossil fuels are making solar energy systems economically feasible for the modern dairyman. During the 1970s the world has come to recognize the reserves of fossil fuels used for energy are limited. The “energy crisis” caused these sources of energy to spiral in cost. Today, alternate sources of energy are being investigated and some are proving to be economically feasible.


2021 ◽  
pp. 3877-3887
Author(s):  
Zainab I. Al-Assadi

An idea of a colored glaze is presented in this study to hide and dispose all the obstacles of using solar systems as facades integrated with buildings. This aim is achieved  by designing multilayer optical interference filters by using Mat lab program . Appropriate dielectric materials, namely NdF3 of high refractive index (nH =1.6)  and ThF4 of low refractive index (nL =1.5143) were employed. Quarter wave thicknesses of high (H) and low (L) refractive index were deposited on a microscopic slide substrate with n=1.513 and 550 nm design wavelength (l°). Two optical models were designed, which are Air//HL//glass and Air//LH//glass,  for even numbers of layers (2-32 layers). The challenge in this study is to find the most efficient design which has lower solar reflectance (Rsol.) and higher solar transmittance (Tsol.) to raise the efficiency of the solar systems  and, in parallel, obtain the colored reflection to achieve the esthetic appearance of the buildings integrated with the solar system facades. The Tsol. value was high (94-95 %), whereas the Rsol. was very low  (4-5 %). Hence, the  efficiency of the solar system was increased. The two optical models exhibited green color reflectance in the visible region. The first design, i.e. Air/HL/glass, showed higher values of  Rvis.  and the merit factor (M) than the second model, resulting in a higher potential of coloration. The first design requires fewer materials and layers, thus, it is more cost-effective as compared to the second one.


2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Randa Hassan Mohamed ◽  
Gehan Ahmed Ebrahim

The elements and means affecting the formulation and structure of the architectural buildings have been greatly developed by man throughout different ages according to the development of technology, so the dimensions and specifications of configuring dynamic buildings can be designed and controlled in order to leave the required effects on the environment and the user to serve certain purpose or function. But it seems that the process of formulating any architectural vocabulary acting on the dynamic aspect goes beyond the boundaries of the perceived dimensions and the included unperceived one; as the first dimensions may be considered namely the aesthetic aspect in architectural work, while the included unperceived dimensions may display efficiency in work which is greatly influenced by the personality and the formative attitudes of the architect, the site style and the surrounded environment, as well as the economic efficiency of the building. However, the liability issue seems to be the absence of the criterion of forming efficient dynamic configurations in architecture. Accordingly this research aims to reach this criterion as identifying the architectural attitudes; as a decisive in shaping the building as its facades, envelopes, sections or plans. Additionally, it attempts to explain the reciprocal relation between the architectural vocabulary (perceived aspects of configuration) and the unperceived one which is distinguishing the valuable architectural works. The research will attempt to analyze the elements included and the aesthetic and formative considerations while configuring the dynamic building to determine the important role played by such formation in reaching the psychological and physiological effect on the user in turn to maximize its utilization of such architectural work.


Nanophotonics ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Søren Raza ◽  
Anders Kristensen

AbstractThe advent of resonant dielectric nanomaterials has provided a new path for concentrating and manipulating light on the nanoscale. Such high-refractive-index materials support a diverse set of low-loss optical resonances, including Mie resonances, anapole states, and bound states in the continuum. Through these resonances, high-refractive-index materials can be used to engineer the optical near field, both inside and outside the nanostructures, which opens up new opportunities for Raman spectroscopy. In this review, we discuss the impact of high-refractive-index nano-optics on Raman spectroscopy. In particular, we consider the intrinsic Raman enhancement produced by different dielectric resonances and their theoretical description. Using the optical reciprocity theorem, we derive an expression which links the Raman enhancement to the enhancement of the stored electric energy. We also address recent results on surface-enhanced Raman spectroscopy based on high-refractive-index dielectric materials along with applications in stimulated Raman scattering and nanothermometry. Finally, we discuss the potential of Raman spectroscopy as a tool for detecting the optical near-fields produced by dielectric resonances, complementing reflection and transmission measurements.


Sign in / Sign up

Export Citation Format

Share Document