scholarly journals Conceptual design of Blended Wing Body for Future Air Transportation

Author(s):  
Shruti Dipak Jadhav ◽  
Pawan Hiteshbhai Jethwa ◽  
Shiva Prasad U ◽  
Suresh Kumar M

Blended wing body is a fixed wing aircraft which are smoothly blended together with no clear dividing line and no distinct wings also be given a wide Aerofoil shaped body. The future transportation is of aircrafts will incline towards the aerodynamically efficient and capable of carrying large number of passengers over long range and environmental benefits is the main paradigm in the design of aircraft BWB has a high lift to drag ratio which increases the CL max and velocity of the airplane with high load factor and high economy compared with traditional aircraft. Evacuation pressure or the cabin pressurization is the major issues in most of the designs with the minimum aerodynamic lift coefficient and drag coefficient. On the other side of the trend is towards the increasing cruise speed. High speed flow is connected with overcoming of intensive drag rise accruing due to existence of intensive shock, closing local area of supersonic flow. Increase of flight Mach number is possible only by using flow control methods and through affecting the shock increases of aspect ratio leads to increase of lift coefficient corresponding to maximal lift to drag. High bypass ratio engines have smaller fuel consumption and lower noise level but have negative effect on flow around airframe including take-off and landing phases. The necessity of solving problem of intensive aerodynamic heating of surface element of flight vehicles and by ensuring of their stability and controllability and also by need of implementing of high-volume tanks for hydrogen fuel and super high bypass ratio engines.

2011 ◽  
Vol 2 (1) ◽  
pp. 1-28 ◽  
Author(s):  
Ginés De Rus

This paper deals with public investment in High-Speed Rail (HSR) infrastructure and tries to understand the economic rationale for allocating public money to the construction of new HSR lines. The examination of data on costs and demand shows that the case for investing in HSR requires several conditions to be met: an ex ante high volume of traffic in the corridor where the new lines are built, significant time savings, high average willingness of potential users to pay, the release of capacity in the conventional rail network and airports. On the contrary, net environmental benefits seem to be insignificant in influencing the social desirability of HSR investment. This paper discusses, within a cost-benefit analysis framework, under which conditions the expected benefits could justify the investment in HSR projects.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4143
Author(s):  
Youzheng Cui ◽  
Shenrou Gao ◽  
Fengjuan Wang ◽  
Qingming Hu ◽  
Cheng Xu ◽  
...  

Compared with other materials, high-volume fraction aluminum-based silicon carbide composites (hereinafter referred to as SiCp/Al) have many advantages, including high strength, small change in the expansion coefficient due to temperature, high wear resistance, high corrosion resistance, high fatigue resistance, low density, good dimensional stability, and thermal conductivity. SiCp/Al composites have been widely used in aerospace, ordnance, transportation service, precision instruments, and in many other fields. In this study, the ABAQUS/explicit large-scale finite element analysis platform was used to simulate the milling process of SiCp/Al composites. By changing the parameters of the tool angle, milling depth, and milling speed, the influence of these parameters on the cutting force, cutting temperature, cutting stress, and cutting chips was studied. Optimization of the parameters was based on the above change rules to obtain the best processing combination of parameters. Then, the causes of surface machining defects, such as deep pits, shallow pits, and bulges, were simulated and discussed. Finally, the best cutting parameters obtained through simulation analysis was the tool rake angle γ0 = 5°, tool clearance angle α0 = 5°, corner radius r = 0.4 mm, milling depth ap = 50 mm, and milling speed vc= 300 m/min. The optimal combination of milling parameters provides a theoretical basis for subsequent cutting.


1997 ◽  
Vol 50 (9) ◽  
pp. 477-498 ◽  
Author(s):  
Earl A. Thornton

This review article describes aerospace thermal-structural testing technology. It begins with discussions of aerodynamic heating and space radiation heating. The review continues with a general discussion of thermal-structural test technology including heating and cooling, instrumentation, and thermal-structural boundary conditions. Then illustrative thermal structural tests are presented for high speed flight in the atmosphere and flight in space. Experiments conducted in the laboratory as well as flight tests are described. Several experiments are reviewed to demonstrate the diversity of thermal-structural phenomena. This article includes 120 references.


1971 ◽  
Vol 55 (1) ◽  
pp. 13-38 ◽  
Author(s):  
C. J. PENNYCUICK

1. Glide-comparison measurements were made on ten species of East African soaring birds using a Schleicher ASK-14 powered sailplane. Horizontal and vertical speed differences between bird and glider were measured by a photographic method, and used to estimate the bird's horizontal and vertical speeds relative to the air. The analysis refers to the white-backed vulture, since by far the largest number of measurements was obtained on this species. 2. A regression analysis using a two-term approximation to the glide polar yielded an implausibly high estimate of induced drag, which was attributed to a lack of observations at lift coefficients above 0.72. An amended glide polar was constructed assuming elliptical lift distribution and a maximum lift coefficient of 1.6 to define the low-speed end, while the high-speed end was made to pass through the mean horizontal and sinking speeds of all the experimental points. This curve gave a minimum sinking speed of 0.76 m/s at a forward speed of 10 m/s, and a best glide ratio of 15.3:1 at 13 m/s. It did not differ significantly (in the statistical sense) from the original regression curve. 3. In comparing the estimated circling performance, based on the amended glide polar, with that of the ASK-14, it was concluded that the rates of sink of both should be comparable, but that the glider would require thermals with radii about 4.3 times as great as those needed to sustain the birds. The conclusions are consistent with experience of soaring in company with birds. 4. In an attempt to assess the adaptive significance of the low-aspect-ratio wings of birds specializing in thermal soaring, the white-backed vulture's circling performance was compared with that of an ‘albatross-shaped vulture’, an imaginary creature having the same mass as a white-backed vulture, combined with the body proportions of a wandering albatross. It appears that the real white-back would be at an advantage when trying to remain airborne in thermals with radii between 14 and 17 m, but that the albatross-shaped vulture would climb faster in all wider thermals; on account of its much better maximum glide ratio, it should also achieve higher cross-country speeds. It is concluded that the wing shape seen in vultures and storks is not an adaptation to thermal soaring as such, but is more probably a compromise dictated by take-off and landing requirements. 5. The doubts recently expressed by Tucker & Parrott (1970) about the results and conclusions of Raspet (1950a, b; 1960) are re-inforced by the present experience.


2019 ◽  
Vol 256 ◽  
pp. 02004
Author(s):  
Nornashiha Mohd Saad ◽  
Wirachman Wisnoe ◽  
Rizal Effendy Mohd Nasir ◽  
Zurriati Mohd Ali ◽  
Ehan Sabah Shukri Askari

This paper presents an aerodynamic characteristic study in longitudinal direction of UiTM Blended Wing Body-Unmanned Aerial Vehicle Prototype (BWB-UAV Prototype) equipped with horizontal stabilizers. Flight tests have been conducted and as the result, BWB experienced overturning condition at certain angle of attack. Horizontal stabilizer was added at different location and size to overcome the issue during the flight test. Therefore, Computational Fluid Dynamics (CFD) analysis is performed at different configuration of horizontal stabilizer using Spalart - Allmaras as a turbulence model. CFD simulation of the aircraft is conducted at Mach number 0.06 or v = 20 m/s at various angle of attack, α. The data of lift coefficient (CL), drag coefficient (CD), and pitching moment coefficient (CM) is obtained from the simulations. The data is represented in curves against angle of attack to measure the performance of BWB prototype with horizontal stabilizer. From the simulation, configuration with far distance and large horizontal stabilizer gives steeper negative pitching moment slope indicating better static stability of the aircraft.


IEEE Spectrum ◽  
1991 ◽  
Vol 28 (8) ◽  
pp. 26-31 ◽  
Author(s):  
M. Gerla ◽  
J.A. Bannister

Author(s):  
Yun Zhang ◽  
Lianhuan Wei ◽  
Jiayu Li ◽  
Shanjun Liu ◽  
Yachun Mao ◽  
...  

More and more high-speed railway are under construction in China. The slow settlement along high-speed railway tracks and newly-built stations would lead to inhomogeneous deformation of local area, and the accumulation may be a threat to the safe operation of high-speed rail system. In this paper, surface deformation of the newly-built high-speed railway station as well as the railway lines in Shenyang region will be retrieved by time series InSAR analysis using multi-orbit COSMO-SkyMed images. This paper focuses on the non-uniform subsidence caused by the changing of local environment along the railway. The accuracy of the settlement results can be verified by cross validation of the results obtained from two different orbits during the same period.


Sign in / Sign up

Export Citation Format

Share Document