scholarly journals Performance Analysis of a Low Head Water Vortex Turbine

Author(s):  
Badhan Saha ◽  
Mazharul Islam ◽  
Khondoker Nimul Islam ◽  
Jubair Naim ◽  
Md Shahriar Farabi

A small hydropower plant is an environment-friendly renewable energy technology. The run-of-river type gravitational water vortex turbine can be designed to produce electricity at sites with low water heads. In this study, an experimental investigation was undertaken on this type of turbine with a water tank and a runner which is connected to a shaft. At the end of the shaft, a rope brake was attached to measure the output power, torque and overall efficiency of the vortex turbine by varying flow rates. The designed vortex turbine can achieve an overall efficiency of . The experimental results were validated with available data in the literature and theories associated with the turbine. The results also showed that the flow rate plays a vital role in generating power, torque as well as overall efficiency. The project was completed using local resources and technologies. Moreover, as water is used as the input power, this project is eco-friendly which has no adverse effect on the environment.

2021 ◽  
Author(s):  
Lucia Bytčanková ◽  
Ján Rumann ◽  
Peter Dušička

AbstractThe structural parts of intake structures directly affect the flow velocity distribution in the turbine intake of small hydropower plants, where inhomogeneous flow leads to uneven load of the turbine units causing operational problems. A 2D numerical flow modeling was used for investigations of the flow in an intake structure of a low-head small hydropower plant. The effects of shape changes of the intake structure on the flow velocity distribution in the turbine intakes were investigated and assessed proving significant effect of the shapes of the intake structure on the flow homogeneity in turbine intakes.


2007 ◽  
Vol 48 (10) ◽  
pp. 2663-2670 ◽  
Author(s):  
John S. Anagnostopoulos ◽  
Dimitris E. Papantonis

2021 ◽  
Vol 899 (1) ◽  
pp. 012026
Author(s):  
C Skoulikaris ◽  
K Kasimis

Abstract Services and uses arising from surface water‘s availability, such as hydropower production, are bound to be affected by climate change. The object of the research is to evaluate climate change impacts on energy generation produced by run-of-river small hydropower plants with the use of future river discharges derived from two up-to-date Regional Climate Models. For doing so, the hydropower simulation model HEC-ResSim, calibrated and validated over real power data, was used to simulate the generated energy in the two future periods of 2031-2060 and 2071-2100. The future river discharges in the case study area are derived from the hydrological model E-HYPE that uses as forcing the climatic variables of the CSC-REMO2009-MPI-ESM-LR and KNMI-RACMO22E-EC-EARTH climate models under two Representative Concentration Pathways, namely RCP4.5 and RCP8.5. The research outputs demonstrate a decrease of the generated energy varying from 2.86% to 25.79% in comparison to the reference period of 1971-2000. However, in most of the simulated scenarios the decrease is less than 10.0%, while increased energy production is projected for one of the scenarios. Overall, it can be concluded that the case study run-of-river small hydropower plant will be marginally affected by climate change when the decrease of the relevant river discharges is up to 10-15%.


2020 ◽  
Vol 15 (3) ◽  
pp. 267-276 ◽  
Author(s):  
Kyu Kyu Thin ◽  
Win Win Zin ◽  
Zin Mar Lar Tin San ◽  
Akiyuki Kawasaki ◽  
Abdul Moiz ◽  
...  

The need for electricity is rapidly increasing, especially in developing countries. There is vast hydropower potential existing globally that has not yet been explored. This could be the only solution to solve future global power shortage. Hydropower is a clean and renewable source of energy because it does not exploit the use of water. However, using the conventional approach to harness hydropower results in several challenges. It is difficult to identify suitable sites and assess site potential during the planning stage of hydropower projects. In this study, run-of-river hydropower potential for the Myitnge River Basin was estimated by intergrating a Geographic Information System (GIS) and Soil & Water Assessement Tool (SWAT) model. A GIS based tool was developed using Python to spot the potential locations of the hydropower plants. The hydrological model (SWAT) was designed in order to obtain the values of monthly discharge for all potential hydropwer sites. The flow duration curves at potential locations were developed and the design discharge for hydropower was identified. Forty-four run-of-river (ROR) type potential hydropower sites were identified by considering only the topographic factors. After simulation with SWAT model, twenty potential sites with a hydropower generation potential of 292 MW were identified. Currently, only one 790 MW Yeywa Hydropower Plant, which is the largest plant in Myanmar, exists in the Myitnge River Basin. The amount of estimated power generated from ROR may increase the existing power system of Myitnge Basin by 36%. This study will assist stakeholders in the energy sector to optimize the available resources to select appropiate sites for small hydropower plants with high power potential.


2010 ◽  
Vol 14 (2) ◽  
pp. 117-126 ◽  
Author(s):  
S.K. Singal ◽  
R.P. Saini ◽  
C.S. Raghuvanshi

Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 266
Author(s):  
Md Rakibuzzaman ◽  
Sang-Ho Suh ◽  
Hyoung-Ho Kim ◽  
Youngtae Ryu ◽  
Kyung Yup Kim

Discharge water from fish farms is a clean, renewable, and abundant energy source that has been used to obtain renewable energy via small hydropower plants. Small hydropower plants may be installed at offshore fish farms where suitable water is obtained throughout the year. It is necessary to meet the challenges of developing small hydropower systems, including sustainability and turbine efficiency. The main objective of this study was to investigate the possibility of constructing a small hydropower plant and develop 100 kW class propeller-type turbines in a fish farm with a permanent magnet synchronous generator (PMSG). The turbine was optimized using a computer simulation, and an experiment was conducted to obtain performance data. Simulation results were then validated with experimental results. Results revealed that streamlining the designed shape of the guide vane reduced the flow separation and improved the efficiency of the turbine. Optimizing the shape of the runner vane decreased the flow rate, reducing the water power and increasing the efficiency by about 5.57%. Also, results revealed that tubular or cross-flow turbines could be suitable for use in fish farm power plants, and the generator used should be waterproofed to avoid exposure to seawater.


Sign in / Sign up

Export Citation Format

Share Document