Performance Analysis of a Low Head Water Vortex Turbine

Badhan Saha ◽  
Mazharul Islam ◽  
Khondoker Nimul Islam ◽  
Jubair Naim ◽  
Md Shahriar Farabi

A small hydropower plant is an environment-friendly renewable energy technology. The run-of-river type gravitational water vortex turbine can be designed to produce electricity at sites with low water heads. In this study, an experimental investigation was undertaken on this type of turbine with a water tank and a runner which is connected to a shaft. At the end of the shaft, a rope brake was attached to measure the output power, torque and overall efficiency of the vortex turbine by varying flow rates. The designed vortex turbine can achieve an overall efficiency of . The experimental results were validated with available data in the literature and theories associated with the turbine. The results also showed that the flow rate plays a vital role in generating power, torque as well as overall efficiency. The project was completed using local resources and technologies. Moreover, as water is used as the input power, this project is eco-friendly which has no adverse effect on the environment.

2017 ◽  
Vol 120 ◽  
pp. 08005
Ibrahim Yuksel ◽  
Hasan Arman ◽  
Ibrahim Halil Demirel

M. Ahmad ◽  
M. A. Khan ◽  
M. Zafar ◽  
S. Sultana

2018 ◽  
Vol 70 ◽  
pp. 01011
Jochen Lehmann ◽  
Thomas Luschtinetz ◽  
Johannes Gulden

Basing on the figure “Power to Hydrogen / Power to Gas”, shown by the authors at the last HTRSE conference, this time it will be illustrated, that green hydrogen - produced with renewable energy - has the potential to become a basic material in the economy at general instead of fossil one. Synergies are available. But the low price of hydrogen produced via steam reformation of natural gas prevents to reach business cases for environment friendly products as long as the European laws and regulations do not support production and use of green hydrogen for instance by a tax for CO2 emission.

2020 ◽  
Vol 154 ◽  
pp. 06003
Mykola Misiuk ◽  
Tetiana Podorozhna ◽  
Olha Balynska ◽  
Oleg Kucher ◽  
Oleksandr Burlakov

The state and prospects of small hydropower development in the context of rationalization of the use of available natural resource potential of Ukraine were considered. It was established that due to insignificant specific weight in the general energy balance, small hydropower cannot significantly affect the structure of energy supply of the country. Attention was drawn to the fact that the adopted State Target Economic Program for Energy Efficiency and the Development of Energy Saving for Renewable Energy Sources and Alternative Fuels for 2010-2020 will promote the use of the potential of small rivers and the development of hydropower. It was noted that the conducted calculations for the future with the help of correlation analysis of installed capacities and production of electricity by small hydropower objects showed that in 2020, at the current rate of development of small hydropower, the planned indicators will not be achieved. The legal principles of functioning of the market of electric energy and formation of relations connected with the development of small hydropower, which are regulated by the Laws of Ukraine and other legislative acts in the field of fuel and energy complex were described.

Clean Energy ◽  
2020 ◽  
Md Arman Arefin ◽  
Mohammad Towhidul Islam ◽  
Mohammad Zunaed ◽  
Khodadad Mostakim

Abstract Almost 80–90% of energy is wasted as heat (provides no value) in a photovoltaic (PV) panel. An integrated photovoltaic–thermal (PVT) system can utilize this energy and produce electricity simultaneously. In this research, through energy and exergy analysis, a novel design and methodology of a PVT system are studied and validated. Unlike the common methods, here the collector is located outside the PV panel and connected with pipes. Water passes over the top of the panel and then is forced to the collector by a pump. The effects of different water-mass flow rates on the PV panel and collector, individual and overall efficiency, mass loss, exergetic efficiency are examined experimentally. Results show that the overall efficiency of the system is around five times higher than the individual PV-panel efficiency. The forced circulation of water dropped the panel temperature and increased the panel efficiency by 0.8–1% and exergy by 0.6–1%, where the overall energy efficiency was ~81%.

2007 ◽  
Vol 130 (1) ◽  
W. Reinalter ◽  
S. Ulmer ◽  
P. Heller ◽  
T. Rauch ◽  
J.-M. Gineste ◽  

The CNRS-Promes dish∕Stirling system was erected in Jun. 2004 as the last of three country reference units built in the “Envirodish” project. It represents the latest development step of the EuroDish system with many improved components. With a measured peak of 11kW electrical output power, it is also the best performing system so far. The measurement campaign to determine the optical and thermodynamic efficiency of the system is presented. The optical quality of the concentrator and the energy input to the power conversion unit was measured with a classical flux-mapping system using a Lambertian target and a charge coupled device camera system. An efficiency of the concentrator including the intercept losses of 74.4% could be defined for this particular system. For the thermodynamic analysis all the data necessary for a complete energy balance around the Stirling engine were measured or approximated by calculations. For the given ambient conditions during the tests, a Stirling engine efficiency of 39.4% could be measured. The overall efficiency for the conversion of solar to electric energy was 22.5%.

2016 ◽  
Vol 138 (9) ◽  
Ismail Sezal ◽  
Nan Chen ◽  
Christian Aalburg ◽  
Rajesh Kumar V. Gadamsetty ◽  
Wolfgang Erhard ◽  

In the oil and gas industry, large variations in flow rates are often encountered, which require compression trains with a wide operating range. If the stable operating range at constant speed is insufficient, variable speed drivers can be used to meet the requirements. Alternatively, variable inlet guide vanes (IGVs) can be introduced into the inlet plenum to provide pre- or counterswirl to the first-stage impeller, possibly eliminating the need for variable speed. This paper presents the development and validation of circumferentially nonuniform IGVs that were specifically designed to provide maximum angle variation at minimum losses and flow distortion for the downstream impeller. This includes the comparison of three concepts: a baseline design based on circumferentially uniform and symmetric profiles, two circumferentially nonuniform concepts based on uniquely cambered airfoils at each circumferential position, and a multi-airfoil configuration consisting of a uniquely cambered fixed part and a movable part. The idea behind the circumferentially nonuniform designs was to take into account nonsymmetric flow features inside the plenum and a bias toward large preswirl angles rather than counter-swirl during practical operation. The designs were carried out by computational fluid dynamics (CFD) and first tested in a steady, full-annulus cascade in order to quantify pressure losses and flow quality at the inlet to the impeller at different IGV setting angles (ranging from −20 deg to +60 deg) and flow rates. Subsequently, the designs were mounted in front of a typical oil and gas impeller on a high-speed rotating rig in order to determine the impact of flow distortion on the impeller performance. The results show that pressure losses in the inlet plenum could be reduced by up to 40% with the circumferentially nonuniform designs over the symmetric baseline configuration. Furthermore, a significant reduction in circumferential distortion could be achieved with the circumferentially nonuniform designs. The resulting improvement in impeller performance contributed approximately 40% to the overall efficiency gains for inlet plenum and impeller combined.

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Sweeka Meshram ◽  
Ganga Agnihotri ◽  
Sushma Gupta

The renewable energy systems (RESs) are an attractive option to electrify the community as they are environment friendly, free of cost, and all-pervading. The efficiency of these energy systems is very low and can be improved by integrating them in parallel. In this paper, hydro (7.5 kW) and solar systems (10 kW) are taken as RESs and connected with the utility grid. Due to the intermittent nature of both the hydro and photovoltaic energy sources, utility grid is connected to the system for ensuring the continuous power flow. The hydro power generation system uses the self excited induction generator (SEIG) and converters. The AC/DC/AC converter is used as interface to connect the hydro turbine to the utility grid to adjust the generated voltage to the utility grid voltage. The solar generation system is the combination of PV array, boost converter, and solar inverter. The control of both the hydro and solar power plants is provided through the constant current controller. The analysis has been done to verify the existence of the proposed system. Results demonstrate that the proposed system is able to be put into service and can feed the community.

2018 ◽  
Vol 34 (1) ◽  
pp. 135-143 ◽  
Kyle D Palmer ◽  
Mark A Severy ◽  
Charles E Chamberlin ◽  
Anthony J. Eggink ◽  
Arne E Jacobson

Abstract. An All Power Labs PP20 gasifier generation set (Berkeley, Calif.) was tested to evaluate its suitability for powering biomass conversion technologies (BCT) at remote forest operations sites. Feedstock of the species tanoak (), coast redwood (), and Douglas fir () were tested at moisture contents of 15% and 25% (wet basis). The PP20 was connected to a load bank with five different load profiles designed to simulate possible BCT loads. Two parameters of power quality, voltage variability, and frequency deviation, were determined to be within acceptable limits. The unit also successfully powered a remote biochar operation in Branscomb, California. Emissions of the PP20, when compared to diesel generator regulations, would meet non-methane hydrocarbons (NMHC) and NOX requirements but exceed the CO emissions limits by a factor of ten. The CO emissions could be reduced by adding a catalytic converter. The results indicate that it is possible to use a PP20 unit to provide electric power for the highly variable loads of a BCT system. Keywords: Bioenergy, Biomass conversion technology, Gasification, Renewable energy.

Sign in / Sign up

Export Citation Format

Share Document