scholarly journals A Hybrid Deep Learning and Optimized Machine Learning Approach for Rose Leaf Disease Classification

2021 ◽  
Vol 11 (5) ◽  
pp. 7678-7683
Author(s):  
S. Nuanmeesri

Analysis of the symptoms of rose leaves can identify up to 15 different diseases. This research aims to develop Convolutional Neural Network models for classifying the diseases on rose leaves using hybrid deep learning techniques with Support Vector Machine (SVM). The developed models were based on the VGG16 architecture and early or late fusion techniques were applied to concatenate the output from a fully connected layer. The results showed that the developed models based on early fusion performed better than the developed models on either late fusion or VGG16 alone. In addition, it was found that the models using the SVM classifier had better efficiency in classifying the diseases appearing on rose leaves than the models using the softmax function classifier. In particular, a hybrid deep learning model based on early fusion and SVM, which applied the categorical hinge loss function, yielded a validation accuracy of 88.33% and a validation loss of 0.0679, which were higher than the ones of the other models. Moreover, this model was evaluated by 10-fold cross-validation with 90.26% accuracy, 90.59% precision, 92.44% recall, and 91.50% F1-score for disease classification on rose leaves.

2019 ◽  
Author(s):  
Lucas Fontes Buzuti ◽  
Carlos Eduardo Thomaz

The goal of this paper is to implement and compare two unsupervised models of deep learning: Autoencoder and Convolutional Autoencoder. These neural network models have been trained to learn regularities in well-framed face images with different facial expressions. The Autoencoder's basic topology is addressed here, composed of encoding and decoding multilayers. This paper approaches these automatic codings using multivariate statistics to visually understand the bottleneck differences between the fully-connected and convolutional layers and the corresponding importance of the dropout strategy when applied in a model.


Author(s):  
Samir Bandyopadhyay ◽  
Amiya Bhaumik ◽  
Sandeep Poddar

Skin disease is a very common disease for humans. In the medical industry detecting skin disease and recognizing its type is a very challenging task. Due to the complexity of human skin texture and the visual closeness effect of the diseases, sometimes it is really difficult to detect the exact type. Therefore, it is necessary to detect and recognize the skin disease at its very first observation. In today's era, artificial intelligence (AI) is rapidly growing in medical fields. Different machine learning (ML) and deep learning(DL) algorithms are used for diagnostic purposes. These methods drastically improve the diagnosis process and also speed up the process. In this paper, a brief comparison between the machine learning process and the deep learning process was discussed. In both processes, three different and popular algorithms are used. For the machine Learning process Bagged Tree Ensemble, K-Nearest Neighbor (KNN), and Support Vector Machine(SVM) algorithms were used. For the deep learning process three pre-trained deep neural network models


2021 ◽  
pp. 1063293X2110031
Author(s):  
Maolin Yang ◽  
Auwal H Abubakar ◽  
Pingyu Jiang

Social manufacturing is characterized by its capability of utilizing socialized manufacturing resources to achieve value adding. Recently, a new type of social manufacturing pattern emerges and shows potential for core factories to improve their limited manufacturing capabilities by utilizing the resources from outside socialized manufacturing resource communities. However, the core factories need to analyze the resource characteristics of the socialized resource communities before making operation plans, and this is challenging due to the unaffiliated and self-driven characteristics of the resource providers in socialized resource communities. In this paper, a deep learning and complex network based approach is established to address this challenge by using socialized designer community for demonstration. Firstly, convolutional neural network models are trained to identify the design resource characteristics of each socialized designer in designer community according to the interaction texts posted by the socialized designer on internet platforms. During the process, an iterative dataset labelling method is established to reduce the time cost for training set labelling. Secondly, complex networks are used to model the design resource characteristics of the community according to the resource characteristics of all the socialized designers in the community. Two real communities from RepRap 3D printer project are used as case study.


2021 ◽  
pp. 188-198

The innovations in advanced information technologies has led to rapid delivery and sharing of multimedia data like images and videos. The digital steganography offers ability to secure communication and imperative for internet. The image steganography is essential to preserve confidential information of security applications. The secret image is embedded within pixels. The embedding of secret message is done by applied with S-UNIWARD and WOW steganography. Hidden messages are reveled using steganalysis. The exploration of research interests focused on conventional fields and recent technological fields of steganalysis. This paper devises Convolutional neural network models for steganalysis. Convolutional neural network (CNN) is one of the most frequently used deep learning techniques. The Convolutional neural network is used to extract spatio-temporal information or features and classification. We have compared steganalysis outcome with AlexNet and SRNeT with same dataset. The stegnalytic error rates are compared with different payloads.


2021 ◽  
Vol 9 ◽  
Author(s):  
Ashwini K ◽  
P. M. Durai Raj Vincent ◽  
Kathiravan Srinivasan ◽  
Chuan-Yu Chang

Neonatal infants communicate with us through cries. The infant cry signals have distinct patterns depending on the purpose of the cries. Preprocessing, feature extraction, and feature selection need expert attention and take much effort in audio signals in recent days. In deep learning techniques, it automatically extracts and selects the most important features. For this, it requires an enormous amount of data for effective classification. This work mainly discriminates the neonatal cries into pain, hunger, and sleepiness. The neonatal cry auditory signals are transformed into a spectrogram image by utilizing the short-time Fourier transform (STFT) technique. The deep convolutional neural network (DCNN) technique takes the spectrogram images for input. The features are obtained from the convolutional neural network and are passed to the support vector machine (SVM) classifier. Machine learning technique classifies neonatal cries. This work combines the advantages of machine learning and deep learning techniques to get the best results even with a moderate number of data samples. The experimental result shows that CNN-based feature extraction and SVM classifier provides promising results. While comparing the SVM-based kernel techniques, namely radial basis function (RBF), linear and polynomial, it is found that SVM-RBF provides the highest accuracy of kernel-based infant cry classification system provides 88.89% accuracy.


10.29007/8mwc ◽  
2018 ◽  
Author(s):  
Sarah Loos ◽  
Geoffrey Irving ◽  
Christian Szegedy ◽  
Cezary Kaliszyk

Deep learning techniques lie at the heart of several significant AI advances in recent years including object recognition and detection, image captioning, machine translation, speech recognition and synthesis, and playing the game of Go.Automated first-order theorem provers can aid in the formalization and verification of mathematical theorems and play a crucial role in program analysis, theory reasoning, security, interpolation, and system verification.Here we suggest deep learning based guidance in the proof search of the theorem prover E. We train and compare several deep neural network models on the traces of existing ATP proofs of Mizar statements and use them to select processed clauses during proof search. We give experimental evidence that with a hybrid, two-phase approach, deep learning based guidance can significantly reduce the average number of proof search steps while increasing the number of theorems proved.Using a few proof guidance strategies that leverage deep neural networks, we have found first-order proofs of 7.36% of the first-order logic translations of the Mizar Mathematical Library theorems that did not previously have ATP generated proofs. This increases the ratio of statements in the corpus with ATP generated proofs from 56% to 59%.


2021 ◽  
Author(s):  
Pengfei Zuo ◽  
Yu Hua ◽  
Ling Liang ◽  
Xinfeng Xie ◽  
Xing Hu ◽  
...  

GEOMATICA ◽  
2021 ◽  
pp. 1-23
Author(s):  
Roholah Yazdan ◽  
Masood Varshosaz ◽  
Saied Pirasteh ◽  
Fabio Remondino

Automatic detection and recognition of traffic signs from images is an important topic in many applications. At first, we segmented the images using a classification algorithm to delineate the areas where the signs are more likely to be found. In this regard, shadows, objects having similar colours, and extreme illumination changes can significantly affect the segmentation results. We propose a new shape-based algorithm to improve the accuracy of the segmentation. The algorithm works by incorporating the sign geometry to filter out the wrong pixels from the classification results. We performed several tests to compare the performance of our algorithm against those obtained by popular techniques such as Support Vector Machine (SVM), K-Means, and K-Nearest Neighbours. In these tests, to overcome the unwanted illumination effects, the images are transformed into colour spaces Hue, Saturation, and Intensity, YUV, normalized red green blue, and Gaussian. Among the traditional techniques used in this study, the best results were obtained with SVM applied to the images transformed into the Gaussian colour space. The comparison results also suggested that by adding the geometric constraints proposed in this study, the quality of sign image segmentation is improved by 10%–25%. We also comparted the SVM classifier enhanced by incorporating the geometry of signs with a U-Shaped deep learning algorithm. Results suggested the performance of both techniques is very close. Perhaps the deep learning results could be improved if a more comprehensive data set is provided.


2019 ◽  
Vol 1 (1) ◽  
pp. 450-465 ◽  
Author(s):  
Abhishek Sehgal ◽  
Nasser Kehtarnavaz

Deep learning solutions are being increasingly used in mobile applications. Although there are many open-source software tools for the development of deep learning solutions, there are no guidelines in one place in a unified manner for using these tools toward real-time deployment of these solutions on smartphones. From the variety of available deep learning tools, the most suited ones are used in this paper to enable real-time deployment of deep learning inference networks on smartphones. A uniform flow of implementation is devised for both Android and iOS smartphones. The advantage of using multi-threading to achieve or improve real-time throughputs is also showcased. A benchmarking framework consisting of accuracy, CPU/GPU consumption, and real-time throughput is considered for validation purposes. The developed deployment approach allows deep learning models to be turned into real-time smartphone apps with ease based on publicly available deep learning and smartphone software tools. This approach is applied to six popular or representative convolutional neural network models, and the validation results based on the benchmarking metrics are reported.


Sign in / Sign up

Export Citation Format

Share Document