scholarly journals Chaos Control and Stabilization of a PID Controlled Buck Converter Using the Spotted Hyena Optimizer

2021 ◽  
Vol 11 (6) ◽  
pp. 7922-7926
Author(s):  
D. Bakria ◽  
M. Azzouzi ◽  
D. Gozim

The voltage controlled buck converter by constant-frequency pulse-width modulation in continuous conduction mode gives rise to a variety of nonlinear behaviors depending on the circuit parameters values, which complicate their analysis and control. In this paper, a description of the DC/DC buck converter and an overview of some of its chaotic dynamics is presented. A solution based on the optimized PID controller is suggested to eliminate the observed nonlinear phenomena and to enhance the dynamics of the converter. The parameters of the controller are optimized with the Spotted Hyena Optimizer (SHO) which uses the sum of the error between the reference voltage and the output voltage as well as the error between the values of the inductor current in every switch opening instant to determine the fitness of each solution. The simulations results in MATLAB proved the efficiency of the proposed solution.

2012 ◽  
Vol 516-517 ◽  
pp. 1512-1516
Author(s):  
Kai Bin Chu ◽  
Nu Wang ◽  
Shu Yue Chen ◽  
Bao Xiang He

The techniques for developing a kind of the precision continuously adjustable high-voltage switching power supply are proposed, based on the constant frequency pulse width modulation strategies with SG3525, and the continuous output voltage adjustment effect is achieved through a gain amplifier controlled by MCU. The circuit is of the significant features such as high precision output voltages, continuously adjustable, a wide adjustment range and a low power consumption. The results of the experiments show that the output voltage is adjustable between 1KV and 25KV, and the maximum output voltage error is 1.6%.


Author(s):  
Dmitry Pikulin

This paper is concerned with the problem of modeling and simulation of piecewise linear systems with the pulse width modulation control. Models of this kind of systems are widely used in engineering practice, in particular in power electronic converters. The research provides the study of chaos and bifurcations in one of the switching converters – step-down converter under voltage mode control, operating in discontinuous and continuous current modes, using Matlab and Simulink simulation environment. Various types of models, including discrete – time maps, switched state – space models are examined in order to detect their suitability and reliability in numerical investigation of nonlinear phenomena in DC–DC converters. Some analytical methods for the search of periodic regimes and their stability estimation were also used in order to validate numerically obtained results and evaluate the accuracy of models used. As direct simulation does not accurately pinpoint bifurcation points and computes only stable invariant sets, some aspects and advantages of numerical path-following are also discussed.


2003 ◽  
Vol 89 (4) ◽  
pp. 2055-2064 ◽  
Author(s):  
Christine K. Thomas ◽  
Lisa Griffin ◽  
Sharlene Godfrey ◽  
Edith Ribot-Ciscar ◽  
Jane E. Butler

Muscles paralyzed by chronic (>1 yr) spinal cord injury fatigue readily. Our aim was to evaluate whether the fatigability of paralyzed thenar muscles ( n = 10) could be reduced by the repeated delivery of variable versus constant frequency pulse trains. Fatigue was induced in four ways. Intermittent supramaximal median nerve stimulation (300-ms-duration trains) was delivered at 1) constant high frequency (13 pulses at 40 Hz each second for 2 min); 2) variable high frequency (each second for 2 min). The first two intervals of each variable frequency train were 5 and 20 ms. The remaining pulses were evenly distributed in time across 275 ms. The number of pulses varied for each subject such that the force time integral in the unfatigued state matched that evoked by a constant 40-Hz train; 3) constant low frequency (7 pulses at 20 Hz each second for 4 min); and 4) variable low frequency (each second for 4 min). The pulse pattern was the same as that for variable high frequency except that the force-time integral was matched to that produced by the constant low-frequency stimulation. These same experiments were performed on the thenar muscles of five able-bodied control subjects. The variable high-frequency trains used to fatigue paralyzed and control muscles had an average (± SE) of 12 ± 2 and 10 ± 1 pulses, respectively. Variable low-frequency trains had 7 ± 1 and 6 ± 1 pulses, respectively. Significant mean force declines of comparable magnitude (to 20–25% initial fatigue force or to 13–21% initial 50 Hz force) were seen in paralyzed muscles with all four stimulation protocols. The force reductions in paralyzed muscles were always accompanied by significant increases in half-relaxation time and decreases in force-time integral, irrespective of the stimulation protocol. Significant force decreases also occurred in control muscles during each fatigue test. Again, these force declines were similar whether constant or variable pulse patterns were used at high or low frequencies (to 40–60% initial fatigue force or to 29–36% initial 50 Hz force). The force reductions in control muscles were significantly less than those seen in paralyzed muscles, except when constant high-frequency stimulation was used. The variations in stimulation frequency, pulse pattern, and pulse number used in this study therefore had little influence on thenar muscle fatigue in control subjects or in spinal cord–injured subjects with chronic paralysis.


2019 ◽  
Vol 29 (01) ◽  
pp. 2050011
Author(s):  
Wen-Ming Zheng ◽  
Wen-Liang Zeng ◽  
Chi-Wa U ◽  
Chi-Seng Lam ◽  
Yan Lu ◽  
...  

A three-level buck (TLB) converter has the characteristics of higher voltage conversion efficiency, lower inductor current ripples, output voltage ripples and voltage stresses on switches when compared with the buck converters in continuous conduction mode (CCM). With a TLB converter integrated on a chip, we cannot avoid its discontinuous conduction mode (DCM) operation due to a smaller inductance and load variation. In this paper, we’ll present and discuss the analysis, design and control of a TLB converter under DCM operation, implemented in a 65[Formula: see text]nm CMOS process. Transistor level simulation results show that when the TLB converter operates at 100[Formula: see text]MHz with a 5[Formula: see text]nH on-chip inductor, a 10[Formula: see text]nF output capacitor and a 10[Formula: see text]nF flying capacitor, it can achieve an output conversion range of 0.7–1.2[Formula: see text]V from a 2.4[Formula: see text]V input supply, with a peak efficiency of 81.5%@120[Formula: see text]mW. The output load transient response is 100[Formula: see text]mV with 101[Formula: see text]ns for undershoot, and 86[Formula: see text]mV with 110[Formula: see text]ns for overshoot when [Formula: see text]–100[Formula: see text]mA. The maximum output voltage ripple is less than 19[Formula: see text]mV.


2020 ◽  
Vol 4 (1) ◽  
pp. 01-06
Author(s):  
Ahmed M. Alturas ◽  
Abdulmajed O. Elbkosh ◽  
Othman Imrayed

This paper is focusing on the stability analysis of the voltage mode control buck converter controlled by pulse-width modulation (PWM). Using two different approaches, the nonlinear phenomena are investigated in two terms, slow scale and fast scale bifurcation. A complete design-oriented approach for studying the stability of dc-dc power converters and its bifurcation has been introduced. The voltage waveforms and attractors obtained from the circuit simulation have been studied. With the onset of instability, the phenomenon of subharmonics oscillations, quasi-periodicity, bifurcations, and chaos have been observed


Author(s):  
Jeevan Naik

<span>In this paper, a design and control for the buck-boost converter, i.e., 1-plus-D converter with a positive output voltage, is presented, which combines the 1-plus-D converter and the synchronous rectified (SR) buck converter. By doing so, the problem in voltage bucking of the 1-plus-D converter can be solved, thereby increasing the application capability of the 1-plus-D converter. Since such a converter operates in continuous conduction mode inherently, it possesses the nonpulsating output current, thereby not only decreasing the current stress on the output capacitor but also reducing the output voltage ripple. Above all, both the 1-plus-D converter and the SR buck converter, combined into a buck–boost converter with no right-half plane zero, use the same power switches, thereby causing the required circuit to be compact and the corresponding cost to be down. Furthermore, during the magnetization period, the input voltage of the 1-plus-D converter comes from the input voltage source, whereas during the demagnetization period, the input voltage of the 1-plus-D converter comes from the output voltage of the SR buck converter.</span>


2013 ◽  
Vol 718-720 ◽  
pp. 1792-1796
Author(s):  
Zhong Qun Li ◽  
Kai Xie ◽  
Ying Hao Ye ◽  
Rong Bin Guo ◽  
Xu Fei Wang

A non-contact testing method is proposed for encapsulation treated or insulation coated switching power supplies, which is implemented by reconstructing the pulse width modulation (PWM) signal of switching converters from the near field radiation of magnetic components. The radiation pattern of a buck converter is investigated, and the magnetic field sensing probe and PWM signal reconstruction circuit are also illustrated. The reconstruction testing is carried out on a buck converter; the duty cycle error of the reconstructed PWM signal is less than 0.2%, which validates the proposed method.


2012 ◽  
Vol 215-216 ◽  
pp. 225-228
Author(s):  
Liang Han ◽  
You Yang Li ◽  
Qian Zhang

This paper aims to design a knee rehabilitation device which can help the knee patients to perform movement in bending leg manner. And in that way the rehabilitation process will be improved greatly. The design of the device includes the mechanical main body design, driving motor, and control circuit which contains the keyboard setting, display unit and clock unit. Through the pulse width modulation (PWM) technology the stepping motor is driven and the automatic bent in leg is achieved. During the exercise the following information is known: the starting time, the lasting time, the angle of movement and the speed of movement. The micro controller unit (MCU) is responsible for the information processing from both the key and liquid crystal display (LCD). After the key inputs the given parameters the stepping motor can output the desired motions. Meanwhile, the LCD can display the input information. Now the project has accomplished the preliminary design, and the concrete scheme is shown in this paper.


2013 ◽  
Vol 23 (04) ◽  
pp. 1350062 ◽  
Author(s):  
GUOHUA ZHOU ◽  
BOCHENG BAO ◽  
JIANPING XU

The complex dynamics and coexisting fast-slow scale instability in current-mode controlled buck converter with constant current load (CCL), operating in both continuous conduction mode (CCM) and discontinuous conduction mode (DCM), are investigated in this paper. Via cycle-by-cycle computer simulation and experimental measurement of current-mode controlled buck converter with CCL, it is found that a unique fast-slow scale instability exists in the second-order switching converter. It is also found that a unique period-doubling accompanied by Neimark–Sacker bifurcation exists in this simple second-order converter, which is different from period-doubling or Neimark–Sacker bifurcations reported previously. Based on a nonlinear discrete-time model and the corresponding Jacobian, the effects of CCL and input voltage on the dynamics of current-mode controlled buck converter are investigated and verified theoretically. Fixed point analysis for slow-scale low-frequency oscillation is also given to verify the dynamics and the coexisting fast-slow scale instability.


Sign in / Sign up

Export Citation Format

Share Document