scholarly journals A Review Paper on Advancements in Solar PV Technology, Environmental Impact of PV Cell Manufacturing

Author(s):  
V. Raja Sekhar ◽  
P. Pradeep

Technological advancement, reduction in the cost of materials, and Government support for sustainable development help improvement in solar PV technology in recent years. Photovoltaic technology is majorly employed to generated electricity worldwide in the renewable energy category. To establish a good market base for Solar PV the efficiency of solar cells plays a significant role. Presently, extensive research work is going for efficiency improvement of solar cells for commercial use. The efficiency of monocrystalline silicon solar cells has shown very good improvement year by year. It starts with only 15% in the 1950s and then increases to 17% in the 1970s and continuously increases up to 28% nowadays. The growth in solar photovoltaic technologies including worldwide status, materials for solar cells, efficiency, factor affecting the performance of PV modules, an overview of a cost analysis of PV, and its environmental impact are reviewed in this paper.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rajkamal Sivakumar ◽  
Prabhakaran Gopalakrishnan ◽  
Mohamed Sikkander Abdul Razak

Purpose Photon absorbance and reflectance are the most important parameters for the recombination of electron-hole pairs. Bandgap energy plays a vital role in photon absorption. That is, the photons with energy greater than band gap energy are absorbed. Also, the refractive index of semiconductors is responsible for photon reflection, as the surface with the highest refractive index will reflect more photons than a surface with have a low refractive index. The purpose of this paper is to improvise the absorbance and reduce the reflectance of photons on the front surface of solar cells. Design/methodology/approach Photon reflection is results in reduction in electron-hole pair generation due to the high refractive index of semiconductive materials. To overcome this problem, an Anti-reflection (AR) coating of TiO2 and SiO2 is undertaken on solar cells through the Sol-spin coating method. Finally, the effectiveness of the Anti-Reflection coating is scrutinized through UV Vis-Spectroscopy, which provides details regarding reflectance, absorbance and bandgap energy characteristics. Findings UV–visible spectroscopy was used to measure the responses from the samples. The samples responded to the ultraviolet and visible range of electromagnetic radiation perfectly. UV spectroscopy was done before and after the antireflection coating of TiO2 and SiO2 over the solar cell to find their corresponding extreme reflectance and absorbance values. The effects of TiO2 and SiO2 were evaluated from the results. Originality/value In this research work, the authors have done anti-reflection coating over solar cells with nanoparticles derived from sol-gel process. Absorbance of photons observed through diffuse reflection method.


2019 ◽  
Vol 66 (2) ◽  
pp. 99-120
Author(s):  
Wilmer Emilio García Moreno ◽  
Andressa Ullmann Duarte ◽  
Litiéle dos Santos ◽  
Rogério Vescia Lourega

AbstractThe photovoltaic technologies have been developed year by year in different countries; however, there are some countries where this kind of energy is being born, such as the Brazilian case. In this paper, some important parameters are analysed and applied to different solar cell materials, identifying that if the fossil fuels were substituted by solar cells, it would reduce the CO2 emissions by 93.2%. In addition, it is shown that the efficiency of solar cells is not as farther as it could be thought from coal thermoelectrical plants in Brazil and the cost of energy using solar cells could be as good as these thermoelectrical plants. Finally, the potentiality of Brazilian territory to implant this technology is presented, identifying that with the use of 0.2% of the territory, the energy demand could be supplied.


2021 ◽  
Vol 939 (1) ◽  
pp. 012003
Author(s):  
B Rasakhodzhaev ◽  
S Makhmudov ◽  
F Muminov

Abstract This paper presents studies on the choice of a heating system based on calculations of economic efficiency and payback periods for alternative systems, a solar greenhouse with a transformable body. The purpose of the work is to carry out calculations to determine the consumption of fuel resources necessary to ensure the required amount of energy for the heating season: consumption of natural gas, solid fuel (coal) and electricity for heating a greenhouse with a transformable (adjustable) body. Analytical methods were used to determine the cost of materials and the main units of a greenhouse with a transformable (adjustable) body. Depending on the shape of the greenhouse, the total costs, economic efficiency and payback periods are determined. The research work carried out shows that, in terms of the cost of construction and consumption of materials, the developed greenhouse with transformable (adjustable) body are quite acceptable for its successful use among farmers and private households in the Republic of Uzbekistan. Calculation of economic efficiency and payback periods for greenhouses with a transformable housing allows you to choose the most acceptable heating system and technical characteristics of alternative systems acceptable for the climatic conditions of Uzbekistan.


2021 ◽  
Vol 1 ◽  
pp. 131-140
Author(s):  
Federica Cappelletti ◽  
Marta Rossi ◽  
Michele Germani ◽  
Mohammad Shadman Hanif

AbstractDe-manufacturing and re-manufacturing are fundamental technical solutions to efficiently recover value from post-use products. Disassembly in one of the most complex activities in de-manufacturing because i) the more manual it is the higher is its cost, ii) disassembly times are variable due to uncertainty of conditions of products reaching their EoL, and iii) because it is necessary to know which components to disassemble to balance the cost of disassembly. The paper proposes a methodology that finds ways of applications: it can be applied at the design stage to detect space for product design improvements, and it also represents a baseline from organizations approaching de-manufacturing for the first time. The methodology consists of four main steps, in which firstly targets components are identified, according to their environmental impact; secondly their disassembly sequence is qualitatively evaluated, and successively it is quantitatively determined via disassembly times, predicting also the status of the component at their End of Life. The aim of the methodology is reached at the fourth phase when alternative, eco-friendlier End of Life strategies are proposed, verified, and chosen.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Long Hu ◽  
Qian Zhao ◽  
Shujuan Huang ◽  
Jianghui Zheng ◽  
Xinwei Guan ◽  
...  

AbstractAll-inorganic CsPbI3 perovskite quantum dots have received substantial research interest for photovoltaic applications because of higher efficiency compared to solar cells using other quantum dots materials and the various exciting properties that perovskites have to offer. These quantum dot devices also exhibit good mechanical stability amongst various thin-film photovoltaic technologies. We demonstrate higher mechanical endurance of quantum dot films compared to bulk thin film and highlight the importance of further research on high-performance and flexible optoelectronic devices using nanoscale grains as an advantage. Specifically, we develop a hybrid interfacial architecture consisting of CsPbI3 quantum dot/PCBM heterojunction, enabling an energy cascade for efficient charge transfer and mechanical adhesion. The champion CsPbI3 quantum dot solar cell has an efficiency of 15.1% (stabilized power output of 14.61%), which is among the highest report to date. Building on this strategy, we further demonstrate a highest efficiency of 12.3% in flexible quantum dot photovoltaics.


2012 ◽  
Vol 571 ◽  
pp. 120-124
Author(s):  
Liang Min Zhang

Hybrid photovoltaic concepts based on a nanoscale combination of organic and inorganic semiconductors are promising way to enhance the cost efficiency of solar cells through a better use of the solar spectrum, a higher ratio of interface-to-volume, and the flexible processability of polymers. In this work, two types of thin film solar cells have been developed. In both types of solar cells, poly-N-vinylcarbazole (PVK) is used as electron donor, cadmium sulfide (CdS) and titanium dioxide (TiO2) nanocrystals are used as electron acceptors, respectively. Since TiO2 has a wide band gap and can only absorb UV light, in the second type of solar cell, ruthenium dye is used as photo-sensitizer. The preliminary results of photoconductive and photovoltaic characteristics of these two inorganic-organic composites are presented.


2016 ◽  
Vol 881 ◽  
pp. 383-386 ◽  
Author(s):  
Raimundo J.S. Paranhos ◽  
Wilson Acchar ◽  
Vamberto Monteiro Silva

This study evaluated the potential use of Sugarcane Bagasse Ashes (SBA) as a flux, replacing phyllite for the production of enamelled porcelain tile. The raw materials of the standard mass components and the SBA residue were characterized by testing by XRF, XRD, AG, DTA and TGA. Test samples were fabricated, assembled in lots of 3 units and sintered at temperatures of 1150 ° C to 1210 ° C. The results of the physical properties, mechanical properties and SEM of the sintered samples, showed that the formulation, G4 - in which applied 10% of SBA replacing phyllite, sintering temperature 1210 ° C showed better performance as the previously mentioned properties due to the formation of mullite crystals, meeting the prerequisites of standards for enamelled porcelain tile, while reducing the environmental impact and the cost of production.


2016 ◽  
Vol 2016 ◽  
pp. 1-19 ◽  
Author(s):  
Xiaohui Jia ◽  
Minghui Jiang ◽  
Lei Shi

From the perspective of the interactive cooperation among subjects, this paper portrays the process of cooperative innovation in industrial cluster, in order to capture the correlated equilibrium relationship among them. Through the utilization of two key tools, evolutionary stable strategy and replicator dynamics equations, this paper considers the cost and gains of cooperative innovation and the amount of government support as well as other factors to build and analyze a classic evolutionary game model. On this basis, the subject’s own adaptability is introduced, which is regarded as the system noise in the stochastic evolutionary game model so as to analyze the impact of adaptability on the game strategy selection. The results show that, in the first place, without considering subjects’ adaptability, their cooperation in industrial clusters depends on the cost and gains of innovative cooperation, the amount of government support, and some conditions that can promote cooperation, namely, game steady state. In the second place after the introduction of subjects’ adaptability, it will affect both game theory selection process and time, which means that the process becomes more complex, presents the nonlinear characteristics, and helps them to make faster decisions in their favor, but the final steady state remains unchanged.


2014 ◽  
Vol 48 (1) ◽  
pp. 104-109 ◽  
Author(s):  
Áquila Lopes Gouvêa ◽  
Antônio Fernandes Costa Lima

Quantitative research that aimed to identify the mean total cost (MTC) of connecting, maintaining and disconnecting patient-controlled analgesia pump (PCA) in the management of pain. The non-probabilistic sample corresponded to the observation of 81 procedures in 17 units of the Central Institute of the Clinics Hospital, Faculty of Medicine, University of Sao Paulo. We calculated the MTC multiplying by the time spent by nurses at a unit cost of direct labor, adding the cost of materials and medications/solutions. The MTC of connecting was R$ 107.91; maintenance R$ 110.55 and disconnecting R$ 4.94. The results found will subsidize discussions about the need to transfer money from the Unified Health System to hospitals units that perform this technique of analgesic therapy and it will contribute to the cost management aimed at making efficient and effective decision-making in the allocation of available resources.


Sign in / Sign up

Export Citation Format

Share Document