scholarly journals Fixed points and coupled fixed points in partially ordered ν-generalized metric spaces

2018 ◽  
Vol 19 (2) ◽  
pp. 189 ◽  
Author(s):  
Mortaza Abtahi ◽  
Zoran Kadelburg ◽  
Stojan Radenovic

<p>New fixed point and coupled fixed point theorems in partially ordered ν-generalized metric spaces are presented. Since the product of two ν-generalized metric spaces is not in general a ν-generalized metric space, a different approach is needed than in the case of standard metric spaces.</p>

2013 ◽  
Vol 21 (3) ◽  
pp. 155-180 ◽  
Author(s):  
Nguyen Van Luong ◽  
Nguyen Xuan Thuan

Abstract In this paper, we prove some coupled fixed point theorems for O-compatible mappings in partially ordered generalized metric spaces under certain conditions to extend and complement the recent fixed point theorems due to Bhaskar and Lakshmikantham [Nonlinear Anal. TMA 65 (2006) 1379 - 1393] and Berinde [Nonlinear Anal. TMA 74 (2011) 7347-7355]. We give some examples to illustrate our results. An application to integro-differential equations is also given.


2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
Dušan Ðukić ◽  
Zoran Kadelburg ◽  
Stojan Radenović

Fixed point theorems for mappings satisfying Geraghty-type contractive conditions are proved in the frame of partial metric spaces, ordered partial metric spaces, and metric-type spaces. Examples are given showing that these results are proper extensions of the existing ones.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Maryam A. Alghamdi ◽  
Chi-Ming Chen ◽  
Erdal Karapınar

We introduce the notion of generalized weaker(α-ϕ-φ)-contractive mappings in the context of generalized metric space. We investigate the existence and uniqueness of fixed point of such mappings. Some consequences on existing fixed point theorems are also derived. The presented results generalize, unify, and improve several results in the literature.


2014 ◽  
Vol 23 (1) ◽  
pp. 65-72
Author(s):  
LULJETA KIKINA ◽  
◽  
KRISTAQ KIKINA ◽  
ILIR VARDHAMI ◽  
◽  
...  

Fixed point theorems for almost contractions in generalized metric spaces are proved. The obtained results are extensions and generalizations, from metric space setting to generalized metric space setting, of many well-known fixed point theorems in literature.


2015 ◽  
Vol 31 (1) ◽  
pp. 65-75
Author(s):  
Deepak Singh ◽  
Surjeet Singh Tomar ◽  
M.S. Rathore ◽  
Varsha Chauhan

2018 ◽  
Vol 12 (2) ◽  
pp. 389-400 ◽  
Author(s):  
Ishak Altun ◽  
Bessem Samet

In this paper, we present a new class of pseudo Picard operators in the setting of generalized metric spaces introduced recently in [M. Jleli and B. Samet: A generalized metric space and related fixed point theorems, Fixed Point Theory Appl., (2015) 2015:61]. An example is provided to illustrate the main result.


2015 ◽  
Vol 08 (04) ◽  
pp. 1550068 ◽  
Author(s):  
Stefan Czerwik ◽  
Krzysztof Król

In this paper we present the results on the existence of fixed points of system of mappings in generalized metric spaces generalizing the result of Diaz and Margolis. Also the “local fixed point theorems” of a system of such mappings both in generalized and ordinary metric spaces are stated. Banach fixed point theorem and many others are consequences of our results.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Chi-Ming Chen ◽  
W. Y. Sun

We introduce the notion of weaker(ϕ,φ)-contractive mapping in complete metric spaces and prove the periodic points and fixed points for this type of contraction. Our results generalize or improve many recent fixed point theorems in the literature.


2013 ◽  
Vol 46 (1) ◽  
Author(s):  
Luljeta Kikina ◽  
Kristaq Kikina

AbstractA generalized metric space has been defined by Branciari as a metric space in which the triangle inequality is replaced by a more general inequality. Subsequently, some classical metric fixed point theorems have been transferred to such a space. In this paper, we continue in this direction and prove a version of Fisher’s fixed point theorem in generalized metric spaces.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
S. A. Mohiuddine ◽  
Abdullah Alotaibi

Two concepts—one of the coupled fixed point and the other of the generalized metric space—play a very active role in recent research on the fixed point theory. The definition of coupled fixed point was introduced by Bhaskar and Lakshmikantham (2006) while the generalized metric space was introduced by Mustafa and Sims (2006). In this work, we determine some coupled fixed point theorems for mixed monotone mapping satisfying nonlinear contraction in the framework of generalized metric space endowed with partial order. We also prove the uniqueness of the coupled fixed point for such mappings in this setup.


Sign in / Sign up

Export Citation Format

Share Document