scholarly journals Alan Cowan: Buprenorphine from the bench to the bedside—Personal notes

2021 ◽  
Vol 17 (7) ◽  
pp. 5-7
Author(s):  
Saadet Inan, MD, PhD ◽  
Michael Guarnieri, PhD, MPH

In 2005, Bob Adams, the Chief Veterinarian at Johns Hopkins, wondered if sustained release technology could be used to improve postsurgical analgesia for animal medicine. Henry Brem, Director of the Hunterian Laboratories, had organized an international consortium to advance therapy for brain tumors and stroke. The Hunterian had over 20 years of experience with the safety and effectiveness of neutral lipids, phospholipids, carbohydrates, gels, polymers, and assorted devices for sustained-release drug delivery. We had the technology. What was the best pharmacology? Buprenorphine was the obvious analgesic. Reports of adverse events in the veterinary literature were rare.

Author(s):  
Kamble Ravindra K. ◽  
Chauhan Chetan S. ◽  
Kamble Priyadarshani R. ◽  
Naruka Pushpendra S.

The main aim of the present work was to develop the microcapsules of tramadol hydrochloride for the oral sustained release drug delivery. Tramadol hydrochloride a BCS class I drug a centrally acting synthetic analgesic was complexed with Indion 254 ion exchange resin. The microcapsules were prepared by encapsulating the prepared resinates by o/o solvent evaporation technique. In the investigation 32 full factorial design was used to investigate the joint influence of two formulation variable amount of eudragit RS 100 and plasticized PEG 400. The results of multiple linear regression analysis indicated that for obtaining a sustained release drug delivery the optimum concentrations of both the plasticizer and coating solution to be used. The factorial models were used to prepare optimized microcapsules and optimized formulations showed sustained release profiles for the extended period of more than 12 hrs. From the present investigations concluded that resinate microcapsules of highly water soluble drug can provide controlled release of drug for extended period.Key Words: Tramadol hydrochloride, ion exchange resinate, microcapsules, sustained release


2019 ◽  
Vol 24 (8) ◽  
pp. 1694-1700 ◽  
Author(s):  
Yiqi Cao ◽  
Karen E. Samy ◽  
Daniel A. Bernards ◽  
Tejal A. Desai

2021 ◽  
Vol 11 ◽  
Author(s):  
Lalit Singh ◽  
Vijay Sharma

Aim: Aim of the present work is implementation of Quality by Design principles for the evolution of optimized sustained release drug delivery system Background: Quality by Design (QbD) approach refers to an advance approach to develop a optimized dosage form.QbD has become a vital modern scientific approach to develop a quality dosage form.In modern era of science researcher can develop a optimized dosage form with least effort, money and manpower. Objectives: Objective of research work wasthe successful development of optimized floating bioadhesive tablets of glipizide using floating-bioadhesive potential of cellulosic polymer and carbomersusing quality by design (QbD) approach. Method: Quality Target Product Profile (QTPP) of drug delivery system was defined as well as critical quality attributes (CQAs) were identified. A face centered central composite design (CCD) was utilized in assessing the impact of individual critical material attribute (CMA) like Hydro Propyl Methyl Cellulose K4M(HPMC K4M)and Carbopol 934P (CP 934P) and their interactions, using least experimentation. Formulations were developed and quantitative impact on CQAs was determined using mathematical model. The optimized formulation was obtained and characterized for in-vitro as well as in-vivo parameters. Results: A Fishikawa diagram and Failure Mode and Effect Analysis (FMEA) were performed to identify potential failure modes associated with the dosage form. The optimum formulation was embarked upon using mathematical model developed yielding desired CQAs followed for confirmation of data. Sustained release drug delivery system was successfully developed by using QbD approach. In-vivo X-ray imaging in rabbit and γ-scintigraphic study in manconfirmed the buoyant nature of the mucoadhesive floating tablet for 8 h in the upper gastrointestinal tract. Conclusion: Optimized formulation shows phenomenal floating, bioadhesive properties and drug release retardation characteristics, utilizing a mixture of cost-effective polymers Hence, QbD approach may be regarded as an important tool in development of floating bioadhesive CR dosage forms.


Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1746 ◽  
Author(s):  
Ning Li ◽  
Aimin Shi ◽  
Qiang Wang ◽  
Guoquan Zhang

The multivesicular liposome (MVL) provides a potential delivery approach to avoid the destruction of the structure of drugs by digestive enzymes of the oral cavity and gastrointestinal system. It also serves as a sustained-release drug delivery system. In this study, we aimed to incorporate a water-soluble substance into MVLs to enhance sustained release, prevent the destruction of drugs, and to expound the function of different components and their mechanism. MVLs were prepared using the spherical packing model. The morphology, structure, size distribution, and zeta potential of MVLs were examined using an optical microscope (OM), confocal microscopy (CLSM), transmission electron cryomicroscope (cryo-EM) micrograph, a Master Sizer 2000, and a zeta sizer, respectively. The digestion experiment was conducted using a bionic mouse digestive system model in vitro. An in vitro release and releasing mechanism were investigated using a dialysis method. The average particle size, polydispersity index, zeta potential, and encapsulation efficiency are 47.6 nm, 1.880, −70.5 ± 2.88 mV, and 82.00 ± 0.25%, respectively. The studies on the controlled release in vitro shows that MVLs have excellent controlled release and outstanding thermal stability. The angiotensin I-converting enzyme (ACE) inhibitory activity of ACE-inhibitory peptide (AP)-MVLs decreased only 2.84% after oral administration, and ACE inhibitory activity decreased by 5.03% after passing through the stomach. Therefore, it could serve as a promising sustained-release drug delivery system.


Author(s):  
Beilei Wang ◽  
Weiye Cheng ◽  
Caiyun Zhang ◽  
Youmei Bao ◽  
Liqiong Zha ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document