scholarly journals GC-MS analysis and Molecular docking of Quercetin compounds of Phytolacca octandra with the target protein of infection causing Staphylococcus aureus

2022 ◽  
Vol 24 (1) ◽  
pp. 141-151
Author(s):  
VithyaEswari. D ◽  
◽  
R. Subashkumar ◽  

Phytolacca octandra is a perennial usually about 1m high herb, dense and erect in full sun. As only few reports were available on the studies about the bioactive compounds and various activities in the Phytolacca octandra, the present study focuses on the bio active compounds attributed to antibacterial activity in the plant extracts by Gas Chromatography – Mass Spectrometry (GCMS) and molecular docking methods. Antibacterial activity of Phytolacca octandra showed maximum inhibitory zones of 21mm, 18mm, 19mm, 19mm and 20mm against respective organisms for 25mg/ml of acetone extracts. The outcome of Phytolacca octandra extracts that was exposed to GC-MS analysis, showed the presence of 20 more compounds. The most identified compounds to have anti-oxidant activity are Dodecane, Octadecane and Octacosane. The other major compounds present in extract are Cyclohexen-oxopropyl, 1,2-Benzenedicarboxylic acid.The overall docking energies of the target protein, rhamnolipids biosynthesis 3-oxoacyl-[acyl-carrier-protein] reductase with quercetin with the number of hydrogen bonds were presented in the study; The docking report revealed –8.01Kcal/Mol binding energies and 8 hydrogen bonding between the Phytolacca octandra compound, quercetin and the target binding protein, rhlG of infection causing pathogen Staphylococcus aureus.

2018 ◽  
Vol 7 (2) ◽  
pp. 116-120
Author(s):  
Senthamizh Selvan N ◽  
◽  
Isaiah S ◽  

The present study was focused to examine the presence of phytoconstituents in the ethanolic extract of Shuteria involucrata plant using GC-MS analysis and Antibacterial activity. The GC-MS analysis of S. involucrata leaf was performed using Agilent 6890-JEOL GC-Mate-II Mass Spectrometer. The result of the study showed the presence of six bioactive compounds in the ethanolic extract. The antimicrobial activity was carried out by disc diffusion technique against the four selected pathogens. Among the four, tested for Antibacterial Activity Staphylococcus aureus, and Pseudomonas aeruginosa and were more susceptible to the extract, whereas the others are less susceptible. Ethanol and methanol extracts of plant materials exhibited good antibacterial activity against gram positive, gram negative bacterias


2020 ◽  
Vol 15 (9) ◽  
pp. 1934578X2095325
Author(s):  
Bala Namata Abba ◽  
Abderrahmane Romane ◽  
Amadou Tidjani Ilagouma

Endostemon tereticaulis (poir.) M.Ashby is a species of the Lamiaceae family present in Niger. This plant is used in traditional medicine due to its various biological potentialities. The present study investigated the chemical composition of the essential oil and the antibacterial activity of the essential oil and ethanolic extract of Endostemon tereticaulis against resistant pathogenic bacteria. Gas chromatography-mass spectrometry analysis of the essential oil led to the identification of 43 compounds representing 99.55% of the total essential oil. The major components were caryophyllene oxide (15.17%) followed by α-humulene (13.96%), α-copaene (11.75%), ( E)-β-caryophyllene (8.44%), and δ-cadinene (6.78%). The antibacterial activity was tested against multiresistant Acinetobacter baumannii P1483, Salmonella spp. H1548, extended-spectrum β-lactamase- Escherichia coli Bu8566, Enterobacter cloacae Bu147, Proteus mirabilis Bu190 , Pseudomonas aeruginosa (ATCC 27853), Klebsiella pneumoniae (ATCC 700603), Escherichia coli (ATCC 25922), Enterococcus faecium H3434, methicillin-resistant Staphylococcus aureus P1123, and Staphylococcus aureus (ATCC 25923). The antibacterial assays revealed that the essential oil was more active than the ethanolic extract against the studied bacteria with minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) values ranging from 0.06 to 2 mg/mL. Also, the ethanolic extract was effective against the bacteria tested with MIC and MBC values ranging from 0.12 to 3 mg/mL. This study showed that Endostemon tereticaulis essential oil is rich in bioactive compounds. Ethanolic extract and essential oil exhibited potential antibacterial activity. These results provide a scientific basis for the use of this plant in traditional medicine. The current study described for the first time the antibacterial activity of Endostemon tereticaulis.


2008 ◽  
Vol 3 (6) ◽  
pp. 1934578X0800300 ◽  
Author(s):  
Teresa Díaz ◽  
Flor D. Mora ◽  
Judith Velasco ◽  
Tulia Díaz ◽  
Luis B. Rojas ◽  
...  

The chemical constituents of the essential oil obtained by hydrodistillation from the leaves of Calycolpus moritzianus (O. Berg) Burret, syn Psidium caudatum Mc Vaught, collected in November 2006 in Mérida State, Venezuela, were identified by GC-MS analysis. Thirty components (91.1% of the sample) were identified, of which the seven major ones were β-caryophyllene (21.9%), α-pinene (10.9%), viridiflorol (9.7%), β-selinene (6.1%), α-copaene (6.3%), α-selinene (5.3%) and γ-eudesmol (5.1%). The oil was found to have antibacterial activity against Staphylococcus aureus ATCC (6538) and Enterococcus faecalis ATCC (29212), with MIC values of 60 μg/mL and 180 μg/mL, respectively.


2020 ◽  
Vol 25 (1) ◽  
pp. 1-6
Author(s):  
M. Rajbhandari ◽  
U. Lindequist

Anaphalis busua (Buch-Ham ex D. Don) is traditionally used to treat cuts and wounds. In the agar dilution method, the hexane extract of the aerial part of A. busua exhibited potent antibacterial activity with a minimal inhibitory concentration of 25 μg/ml against Bacillus subtilis and 500 μg/ml against Staphylococcus aureus. For the isolation of antibacterial compounds, the hexane extract was fractionated by silica gel and Sephadex LH 20 column chromatography. The direct bioautography method was used to determine the antibacterial activity of the fractions. The active fractions were finally purified by semi-preparative HPLC on C18 Phenomenex column under gradient condition. Four flavones derivatives of 3,5-dihydroxy-6,7,8-trimethoxyflavone (1), 3,5,7-trihydroxy-6-methoxyflavone (alnusin) (2), 3,5,7-trihydroxy-8-methoxyflavone (3) and pinocembrin (4) were isolated, and their structures were established by 1H, 13C, DEPT-135, and ESI-MS spectroscopy. These compounds were isolated for the first time from A. busua. The fatty acid profile of the hexane extract was analyzed by gas chromatography-mass spectrometry (GC-MS) by silylation with N-methyl-N-trimethylsilyl-trifluoro-acetamide. Pinocembrin showed antibacterial activity with the minimum inhibitory concentration of 60 μg/mL against Bacillus subtilis and 420 μg/mL against Staphylococcus aureus.


Author(s):  
Shivaprasad Bilichodmath

Aim: This study determines molecular docking to know the selected active compounds of lemon grass against bacterial receptor proteins of Porphyromonasgingivalis and the minimum inhibitory concentration of lemon grass extract against P. gingivalis. Materials and methods: The lemon grass essential oil extraction was subjected for evaporation to remove the methanol and was collected for analysis by Gas Chromatography Mass Spectrometry Analysis (GCMS) to know the compounds of lemon grass which was effective against peptidyl-arginine deiminase of P. gingivalis. Molecular docking technique was done to study these compounds and their interactions with the target protein in the test organism. Finally, minimum inhibitory concentration was done to know the antibacterial activity of lemon grass oil components against P. gingivalis. Results: A total of 15 compounds were obtained after GCMS analysis but 3 main compounds were selected i.eCitronellol, D-Limonene and Geraniol. D- limomonene exhibited good binding with a score of -6.05. Geraniol and Citronellol exhibited a binding score of -5.84 and -5.32 respectively for P.gingivalis. 200µl of extract of lemon grass caused 50.2% reduction in number of colonies of P. gingivalis Conclusion: The active ingredients from lemongrass oil containing Citronellol, D-Limonene and Geraniol showed antibacterial activity against P. gingivalis with MIC of 20µl/ml.


Author(s):  
Thongchai Khammee ◽  
Amornmart Jaratrungtawee ◽  
Mayoso Kuno

Objective: The essential oil and scented extracts of Michelia alba DC. were analyzed by gas chromatography–mass spectrometry (GC–MS) and investigated for antidiabetic activities in vitro and in silico.Methods: The identification of steam distilled essential oil and scented extracts of M. alba was performed by GC–MS on the Agilent 7890A chromatograph couple with GC-7000 Mass Triple Quadrupole. The extractions have been evaluated the antidiabetic activities by alpha-amylase (α-amylase) assay using starch as substrates. In addition, computational molecular docking analysis of significant components was studied to understanding how selected compounds interacted with α-amylase using AutoDock 4.2.Results: The yields of M. alba of steam distilled essential oil and solvent extractions including hexane, diethyl ether, and dichloromethane were 0.16%, 0.02%, 0.47%, and 0.92%, respectively. GC–MS analysis of essential oil revealed that the main component was monoterpenoids β-linalool (65.03%). Meanwhile, 2-methylbutanoic acid was a primary in hexane extract (36.54%) and dichloromethane extract (33.07%). In the case of ether extract, the primary compound was β-linalool (37.32%) same as in essential oil. The antidiabetic activities evaluation demonstrates that essential oil and scented extracts have shown promising α-amylase inhibition activity. Essential oil from steam distillation revealed the best inhibition potential with a half maximal inhibitory concentration value of 0.67±4.7 mg/ml and their significant components demonstrated negative binding energies, indicating a high affinity to the α-amylase-binding site using molecular docking simulation.Conclusion: Data from this study suggest that essential oil and scented extracts of M. alba DC possess in vitro α-amylase activities and can be used for therapy of diabetes.


2020 ◽  
Author(s):  
Rashid Saif ◽  
Muhammad Hassan Raza ◽  
Talha Rehman ◽  
Muhammad Osama Zafar ◽  
Saeeda Zia ◽  
...  

<p>One of the main reasons of rapidly growing cases of COVID-19 pandemic is the unavailability of approved therapeutic agents. Therefore, it is urgently required to find out the best drug/vaccine by all means. Aim of the current study is to test the anti-viral drug potential of many of the available olive and turmeric compounds that can be used as potential inhibitors against one of the target proteins of SARS-nCoV2 named Main protease (Mpro/3clpro). Molecular docking of thirty olive and turmeric compounds with target protein was performed using Molecular Operating Environment (MOE) software to determine the best ligand-protein interaction energies. The structural information of the viral target protein M pro/3CL pro and ligands were taken from PDB and PubChem database respectively. Out of the thirty drug agents, 6 ligands do not follow the Lipinski rule of drug likeliness by violating two or more rules while remaining 24 obey the rules and included for the downstream analysis. Ten ligands from olive and four from turmeric gave the best lowest binding energies, which are Neuzhenide, Rutin, Demethyloleoeuropein, Oleuropein, Luteolin-7-rutinoside, Ligstroside, Verbascoside, Luteolin-7-glucoside, Cosmosin, Curcumin, Tetrehydrocurcumin, Luteolin-4'-o-glucoside, Demethoxycurcumin and Bidemethoxycurcumin with docking scores of -10.91, -9.49, -9.48, -9.21, -9.18, -8.72, -8.51, -7.68, -7.67, -7.65, -7.42, -7.25, -7.02 and - 6.77 kcal/mol respectively. Our predictions suggest that these ligands have the potential inhibitory effects of M pro of SARS-nCoV2, so, these herbal plants would be helpful in harnessing COVID-19 infection as home remedy with no serious known side effects. Further, in-silico MD simulations and in-vivo experimental studies are needed to validate the inhibitory properties of these compounds against the current and other target proteins in SARS-nCoV2.<br></p>


Sign in / Sign up

Export Citation Format

Share Document