scholarly journals PLANT GROWTH PROMOTING ACTIVITIES OF RHIZOBACTERIA ISOLATED FROM RHIZOSPHERIC SOILS OF RURAL BANGALORE, INDIA

2021 ◽  
Vol 21 (2) ◽  
Author(s):  
Sadhana Venkatesh ◽  
Sandeep Suryan ◽  
Nagananda Govinahalli Shivashankara ◽  
Swetha Seshagiri

Soil is a dynamic ecosystem which provides support to plant life. Microorganisms inhabiting the rhizosphere region of soil play a key role in agriculture by promoting the exchange of plant nutrients and reducing the application of chemical fertilizers to a large extent. Engineering of rhizospheric region through exploitation of specific microorganisms leads to higher microbial diversity in the soil which in turn plays a significant role in maintaining the soil health. The present work envisages the isolation, screening and biochemical profiling of potent plant growth promoting rhizobacteria from various rhizospheric soils in and around Bangalore. Sixty isolates from rhizospheric region of fourteen different agricultural soils were screened for plant growth promoting traits such as phosphate solubilization, siderophore production, Ammonia, HCN & Phytohormone production. Twelve isolates that exhibited plant growth promotional traits were further subjected to screening for drought and salt tolerance. Among the twelve isolates, four potential isolates namely Serratia marcescens, Pseudomonas aeruginosa and Acinetobacter pittii were identified based on biochemical methods and 16SrRNA sequencing.

2020 ◽  
Vol 273 ◽  
pp. 111118 ◽  
Author(s):  
Zobia Khatoon ◽  
Suiliang Huang ◽  
Mazhar Rafique ◽  
Ali Fakhar ◽  
Muhammad Aqeel Kamran ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2065
Author(s):  
Hammad Anwar ◽  
Xiukang Wang ◽  
Azhar Hussain ◽  
Muhammad Rafay ◽  
Maqshoof Ahmad ◽  
...  

Plant growth-promoting rhizobacteria with multiple growth-promoting traits play a significant role in soil to improve soil health, crop growth and yield. Recent research studies have focused on the integration of organic amendments with plant growth-promoting rhizobacteria (PGPR) to enhance soil fertility and reduce the hazardous effects of chemical fertilizers. This study aims to evaluate the integrated application of biochar, compost, fruit and vegetable waste, and Bacillus subtilis (SMBL 1) to soil in sole application and in combined form. The study comprises eight treatments—four treatments without inoculation and four treatments with SMBL 1 inoculation in a completely randomized design (CRD), under factorial settings with four replications. The results indicate that the integrated treatments significantly improved okra growth and yield compared with sole applications. The integration of SMBL 1 with biochar showed significant improvements in plant height, root length, leaf chlorophyll a and b, leaf relative water content, fruit weight, diameter and length by 29, 29, 50, 53.3, 4.3, 44.7 and 40.4%, respectively, compared with control. Similarly, fruit N, P and K contents were improved by 33, 52.7 and 25.6% and Fe and Zn in shoot were 37.1 and 35.6%, respectively, compared with control. The results of this study reveal that the integration of SMBL 1 with organic amendments is an effective approach to the sustainable production of okra.


2019 ◽  
Vol 8 ◽  
pp. 42-45
Author(s):  
Anup Muni Bajracharya

Good health starts with good food. Humans expect agriculture to supply good food with sufficient nutrients, economically and culturally valued foods, fibers and other products. But the excessive application of synthetic pesticides has exerted an adverse effect on bio-flora, fauna and natural enemies. Even a largest part of yield has been lost due to various stresses, like biotic and abiotic stresses to the plant. On this account, plant growth promoting rhizobacteria (PGPR), an eco-friendly biopesticides is boon for the biocontrol of different plant pathogens. Moreover, PGPR strains can enhance the plant growth through the production of various plant growth promoting substances. These are generally a group of microorganism that is found either in the plane of the rhizosphere or above roots impacting some positive benefits to plants. PGPR are associated with plant roots and augment plant productivity and immunity; however, recent work by several groups shows that PGPR also elicit so-called 'induced systemic tolerance' to salt and drought. PGPR might also increase nutrient uptake from soils, thus reducing the need for fertilizers and preventing the accumulation of nitrates and phosphates in agricultural soils. Scientific researches involve multidisciplinary approaches to understand adaptation of PGPR, effects on plant physiology and growth, induced systemic resistance, biocontrol of plant pathogens, bio fertilization, and potential green alternative for plant productivity, viability of co inoculating, plant microorganism interactions, and mechanisms of root colonization.


Diversity ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 179 ◽  
Author(s):  
Alawiye ◽  
Babalola

Bacteria play a vital role in the quality of soil, health, and the production of plants. This has led to several studies in understanding the diversity and structure in the plant rhizosphere. Over the years, there have been overwhelming advances in molecular biology which have led to the development of omics techniques which utilize RNA, DNA, or proteins as biomolecules; these have been gainfully used in plant–microbe interactions. The bacterial community found in the rhizosphere is known for its colonization around the roots due to availability of nutrients, and composition, and it affects the plant growth directly or indirectly. Metabolic fingerprinting enables a snapshot of the metabolic composition at a given time. We review metabolites with ample information on their benefit to plants and which are found in rhizobacteria such as Pseudomonas spp. and Bacillus spp. Exploring plant-growth-promoting rhizobacteria using omics techniques can be a true success story for agricultural sustainability.


2001 ◽  
Vol 47 (6) ◽  
pp. 590-593 ◽  
Author(s):  
Abdelaly Hilali ◽  
Danielle Prévost ◽  
William J Broughton ◽  
Hani Antoun

One hundred strains of Rhizobium leguminosarum bv. trifolii were isolated from roots of wheat cultivated in rotation with clover in two different regions of Morocco. The isolates were first screened for their effect on the growth of the cultivar Rihane of wheat cultivated in an agricultural soil under greenhouse conditions. After 5 weeks of growth, 14 strains stimulating the fresh or dry matter yield of shoots were selected and used in a second pot inoculation trial performed with two different agricultural soils. The results show that the strains behaved differently according to the soil used. In the loamy sand Rabat, strain IAT 168 behaved potentially like a plant growth promoting rhizobacteria (PGPR), as indicated by the 24% increases (P < 0.1) observed in wheat shoot dry matter and grain yields. In the silty clay Merchouch, no PGPR activity was observed, and 6 strains showed a significant deleterious effect on yields. These observations suggest that it is very important in a crop rotation system to choose a R. leguminosarum bv. trifolii strain that is effective with clover and shows PGPR activity with wheat to avoid deleterious effects on wheat yields.Key words: deleterious bacteria, PGPR (plant growth promoting rhizobacteria), Trifolium alexandrinum, Triticum aestivum.


2015 ◽  
Vol 16 (1) ◽  
pp. 123 ◽  
Author(s):  
Shweta Gupta ◽  
Rajesh Kaushal ◽  
Kirti Kaundal ◽  
Anjali Chauhan ◽  
Ranjit Singh Spehia

Separations ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 223
Author(s):  
Clara de la Osa ◽  
Miguel Ángel Rodríguez-Carvajal ◽  
Jacinto Gandullo ◽  
Clara Aranda ◽  
Manuel Megías ◽  
...  

Background: The application of microorganisms as bioestimulants in order to increase the yield and/or quality of agricultural products is becoming a widely used practice in many countries. In this work, five plant growth-promoting rhizobacteria (PGPR), isolated from cultivated rice paddy soils, were selected for their plant growth-promoting capacities (e.g., auxin synthesis, chitinase activity, phosphate solubilisation and siderophores production). Two different tomato cultivars were inoculated, Tres Cantos and cherry. Plants were grown under greenhouse conditions and different phenotypic characteristics were analysed at the time of harvesting. Results: Tres Cantos plants inoculated with PGPR produced less biomass but larger fruits. However, the photosynthetic rate was barely affected. Several antioxidant activities were upregulated in these plants, and no oxidative damage in terms of lipid peroxidation was observed. Finally, ripe fruits accumulated less sugar but, interestingly, more lycopene. By contrast, inoculation of cherry plants with PGPR had no effect on biomass, although photosynthesis was slightly affected, and the productivity was similar to the control plants. In addition, antioxidant activities were downregulated and a higher lipid peroxidation was detected. However, neither sugar nor lycopene accumulation was altered. Conclusion: These results support the use of microorganisms isolated from agricultural soils as interesting tools to manipulate the level of important bioactive molecules in plants. However, this effect seems to be very specific, even at the variety level, and deeper analyses are necessary to assess their use for specific applications.


Sign in / Sign up

Export Citation Format

Share Document