scholarly journals Antimicrobial activity and physicochemical properties of Balanites aegyptiaca seed oil

2021 ◽  
Vol 12 (4) ◽  
pp. 450-453
Author(s):  
Abdalla Gobara Habieballa ◽  
Halima Elfadel Alebead ◽  
Madena Komi Koko ◽  
Awad Salim Ibrahim ◽  
Asha Fadllallah Wady

This study was aimed to assess the antibacterial and antifungal activities of Balanites aegyptiaca seed oil and characterize the physicochemical properties. Seeds were collected from the local central market, Khartoum-Sudan (2019). The samples were dried under shade and grinded, then the oil was extracted with a Soxhlet extractor using n-hexane. The percentage yield of the extract was found to be 25.64%. The seed oil was tested against Pseudomonas aeruginosa (G-), Escherichia coli (G-), Bacillus subtilis (G+), Staphylococcus aureus (G+), and Candida albicans to assess their antimicrobial properties. The extract of B. aegyptiaca seed oil has antimicrobial activity against most of the organisms tested. The fatty acid profile of the B. aegyptiaca seed oil was analyzed by GC/MS. The results revealed that the presence of five fatty acids, including saturated linoleic acid, oleic acid, and unsaturated palmate and stearic acids, also a unique antioxidant compound butylated hydroxytoluene. The physiochemical properties of the seed oil showed that the oil contained kinetic viscosity (57 cp), density (0.917 g/cm3), refractive index (1.472), acid value (49.96 mg/kg), saponification value (248.75 mg/g), ester number (234.79 mg/kg) and peroxide number (0.02 mg/kg). Through physiochemical analysis, it was found that oil can be used for human consumption due to the percentage yield of unsaturated acids (81%). In addition, the results of the antioxidant activity of the seeds oil showed that the seed oil had moderate antioxidant activity.

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Esther Ramírez-Moreno ◽  
Raquel Cariño-Cortés ◽  
Nelly del Socorro Cruz-Cansino ◽  
Luis Delgado-Olivares ◽  
José Alberto Ariza-Ortega ◽  
...  

Seed oils from two Mexican varieties of cactus pear (green: Opuntia albicarpa and red: Opuntia ficus indica) were extracted with different solvents (hexane, ethanol, and ethyl acetate) to evaluate their antioxidant activity. The seed oil with higher antioxidant activity was selected to evaluate antimicrobial activity. The fatty acid profile was analyzed by gas chromatography-mass spectrometry (GC-MS). Oil from green cactus pear seeds obtained with ethanol and ethyl acetate exhibited higher antioxidant activity (p<0.05) of 323 and 316 μmol TE/20 mg (p < 0.05), respectively, compared to red cactus pear seed oil (≈274 and 247 μmol TE/20 mg with ethyl acetate and ethanol, resp.). The oil obtained with ethanol and higher antioxidant activity was used to determine the antimicrobial activity. Both cactus pear oils produced a microbial inhibition zone in most of the microorganisms evaluated, particularly Saccharomyces cerevisiae which had similar diameter (38–40 mm). The oil fatty acids profiles of both varieties were similar and exhibited a high content of linoleic acid, while two fatty acids (linolenic and behenic) found in red cactus pear were not observed in the green variety.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 1839
Author(s):  
Harlinda Kuspradini ◽  
Indah Wulandari ◽  
Agmi Sinta Putri ◽  
Sabeti Yulis Tiya ◽  
Irawan Wijaya Kusuma

Background: Litsea angulata is a plant species belonging to Lauraceae family that is distributed throughout Indonesia, Malaysia, and New Guinea. The seeds have been traditionally used by local people in Kalimantan, Indonesia for the treatment of boils; however, there is no information about the potency of its branch, bark and leaves yet. This study aimed to determine the antioxidant, antimicrobial activity as well as the phytochemical constituent of Litsea angulata branch, bark, and leaves. Methods: Extraction was performed by successive maceration method using n-hexane, ethyl acetate, and ethanol solvent. Antioxidant activity was evaluated by DPPH radical scavenging assay. The antimicrobial activity using the 96 well-plate microdilution broth method against Staphylococcus aureus and Streptococcus mutans. Results: Based on the phytochemical analysis, it showed that extract of L. angulata contains alkaloids, flavonoids, tannins, terpenoids, and coumarin. The results showed that all extracts of plant samples displayed the ability to inhibit DPPH free radical formation and all tested microorganisms. Conclusions: L. angulata contains secondary metabolites such as alkaloids, flavonoids, tannins, terpenoids, carotenoids, and coumarin. The antioxidant activity on different plant extracts was a range as very strong to weak capacity. All extracts in this study could inhibit the growth of S. aureus and S. mutans.


Author(s):  
FAVIAN BAYAS-MOREJON ◽  
ANGELICA TIGRE ◽  
RIVELINO RAMON ◽  
DANILO YANEZ

Objective: The increase in chronic and degenerative diseases and the use of synthetic antioxidants such as (butylated hydroxyanisole (BHA) or butylated hydroxytoluene (BHT)) are being restricted because they can be considered carcinogenic. Therefore, there is a growing interest in the search for natural antioxidants, especially from plants, due to their content in different bioactive compounds, such as antioxidants and antimicrobials. To evaluate the antibacterial and antioxidant activity of Baccharislatifolia extracts. Methods: For the determination of the antimicrobial activity of extracts of leaves, root, stem and flowers of Baccharislatifolia (Bl), the disk plate diffusion method was used, the strains of Listeria, Salmonella and E. coli were studied; antibiotics Penicillin G and Ciprofloxacin were the controls. For the antioxidant activity, a solution of H2O2 (Abs at 230 nm) was prepared in Potassium Phosphate Monobasic-Sodium Hydroxide buffer. Results: The antimicrobial activity against Listeria and Salmonella, showed that the extracts of leaves and flowers were more effective with inhibition zones>15 mm and>20 mm respectively. In front of E. coli, the extracts of flowers and stem were the best with zones>7.0 mm. Antibiotics studied inhibited the development of Listeria and Salmonella. However, E. coli isolates were resistant. In the antioxidant activity, the flower extract of Bl in 60 mg/ml presents a higher effect with 47.25%. Conclusion: Bl extracts from leaves and flowers were more efficient both in their antimicrobial and antioxidant capacity.


Author(s):  
F. I. Omizegba ◽  
K. A. Bello ◽  
H. M. Adamu ◽  
D. E. A. Boryo ◽  
J. O. Abayeh ◽  
...  

This paper presents the results of some physicochemical properties of cellulosic fabric obtained by esterification using 50 cm3 of oil extracted from the seed of Balanites aegyptiaca. The oil was extracted under reflux with hexane which gave 40% yield and 0.22% moisture content. The identified cellulosic materials 10 cm and 21 cm x 2.5 cm) were subjected to purification process of scouring, bleaching and mercerization to obtain cleaner, whiter and stronger fabric that could withstand esterification treatment. The yarn crimp was 25% and 15% for warp and weft direction respectively, while the grey fabric gave the lowest of 5% and 8% for warp and weft directions. The linear density (45 tex) was recorded for the esterified fabric compared to 37 tex for the grey fabric along warp direction. The fabric sett increased from 24 thd/cm for grey to 27 thd/cm for esterified along warp direction and 16 thd/cm to 23 thd/cm along weft direction. There was an obvious reduction in shrinkage from 31 for mercerized fabric to 28 along warp direction after esterification and 21 to 19 along weft direction. The tensile parameter was 262.60 N and 166.24 N with extension of 13.92 mm and 12.23 mm along warp and weft directions respectively while the grey fabric recorded 223.87 N and 109.39 N with extensions of 3.64 mm and 3.56 mm in warp and weft direction respectively. There was a remarkable improvement in the dry and wet crease recovery angles after esterification (105º dry and 65º wet, 102º dry and 59º wet) along warp and weft direction respectively. The grey fabric gave the lowest crease recovery (50º dry and 37º wet, 45º dry and 35º wet) along warp and weft directions respectively. The esterified fabric recorded lower water absorption. The improvements in the investigated properties may be due to dimensional stability, flexibility and fineness due to esterification. This research is commendable because biodegradable organic seed oil is used to modify the physicochemical properties of cellulosic fabric for the first time. These incredible effects of the seed oil on cellulose is an immense contribution to knowledge, hence the oil is recommended for replacement of the present day toxic chemicals used in textile finishing of cellulosic fabrics.


2020 ◽  
Author(s):  
IFEANYI GODWIN OKOYE ◽  
CHUKWUMA STEPHEN EZEONU ◽  
ELIZABETH KIGBU DANLAMI

Abstract Base – catalyzed transesterification of Shea (Vitellaria paradoxa) seed fat was carried out at a methanol/oil ratio of 5:1 (V/V) at 70oC to synthesize the corresponding methyl esters (biodiesel). The percentage yield of approximately 87%, was recorded after ninety minutes, indicating that Shea fat is a good biodiesel feedstock. The physicochemical properties of the Shea biodiesel were determined. The colour was pale yellow while the relative density (870 Kg/m3), kinematic viscosity (2.66 mm2s-1 400C), acid value (0.19 mg KOH/g), peroxide value (0.52 meq/kg) and cetane number (68.10) were observed. The cloud point was found to be 9.30C, while the flash point of 156.670C, iodine value of 35.29 mg/100g and energy value of 39.3 MJ/Kg were recorded. All these value compare well with previous works and are within acceptable limits as specified by the American Society for Testing and Materials (ASTM). The current research indicated that Shea butter has biodiesel potential aside its uses in culinary and cosmetics applications.


2021 ◽  
Vol 13 (3) ◽  
pp. 820-829
Author(s):  
Meenakshi Garg ◽  
Surabhi Wason ◽  
Prem Lata Meena ◽  
Rajni Chopra ◽  
Susmita Dey Sadhu ◽  
...  

Most common cooking oil, such as soybean oil, can not be used for high-temperature applications, as they are highly susceptible to oxidation. Sesame seed oil rich in natural antioxidants provides high oxidative stability. Therefore, blending sesame oil with soybean oil offer improved oxidative stability. This study aims to determine the effect of frying on the physicochemical properties of sesame and soyabean oil blend. Soybean oil (SO) was blended with sesame seed oil (SSO) in the ratio of A-40:60, B-60:40 and C-50:50 so as to enhance its market acceptability. The changes occurring in soybean and sesame seed oil blend during repeated frying cycles were monitored. The parameters assessed were: Refractive index, specific gravity, viscosity, saponification value, free fatty acid (FFA) , peroxide value, and acid value. Fresh and fried oil blends were also characterised by Fourier Transform Infrared Spectroscopy (FTIR). No significant changes were observed for refractive index and specific gravity values in oil blends. Viscosity of blend B blend was the least, making it desirable for cooking purposes. However, FFA, acid value and peroxide value increased after each frying cycle. The increment of FFA and AV was found low for blend A (10% and 10%,) than blend B (27%,13%) and blend C (13%,13%). The peroxide value of all samples was within the acceptable range. The results of the present study definitely indicated that blending sesame oil with soybean oil could produce an oil blend which is economically feasible and provide desirable physicochemical properties for cooking purposes.


2019 ◽  
Vol 25 (4) ◽  
pp. 318-326 ◽  
Author(s):  
Danielli Matias de Macedo Dantas ◽  
Carlos Yure Barbosa de Oliveira ◽  
Romero Marcos Pedrosa Brandão Costa ◽  
Maria das Graças Carneiro-da-Cunha ◽  
Alfredo Olivera Gálvez ◽  
...  

Microalgae are considered one of the most promising raw materials for the development of high value products for pharmaceuticals, nutraceuticals, and cosmetic industries, as well as being potential sources of protein, vitamins, and minerals for human consumption. Hence, the present research focuses extraction of antioxidant and antimicrobial compounds from Scenedesmus subspicatus using solvents of different polarities. Different solvents such as ethanol, methanol, butanol, acetone, dimethyl sulfoxide, and water were used to extract compounds from the green microalgae S. subspicatus and then they were examined for phytochemical screening, antioxidant activity, and antimicrobial properties. In vitro free radical quenching and total antioxidant activity of extracts were investigated with 1,1-diphenyl-2-picryl hydrazyl and compared with catequin and gallic acid as positive controls. The antimicrobial activity was evaluated in gram-negative and gram-positive bacteria. Aqueous extracts and dimethyl sulfoxide presented better performance in phytochemical analysis. This result showed consistency in the sequential tests. The antioxidant activity was also better using the two solvents cited above. The extracts acetone, water, and dimethyl sulfoxide showed ability to inhibit the growth of Bacillus subtilis. However, only dimethyl sulfoxide inhibited the growth of Klebsiella pneumoniae and Escherichia coli. Use of the aqueous extract, proven its effectiveness, is an economic protocol and avoids the use of toxic substances.


Sign in / Sign up

Export Citation Format

Share Document