scholarly journals DEVELOPMENT AND RESEARCH OF SYNTHESIS TECHNOLOGY CONVERSION OF VEHICLE DIESEL TO GAS ENGINES WITH SPARK IGNITION

InterConf ◽  
2021 ◽  
pp. 258-263
Author(s):  
Serhii Kovalov

The expediency of converting transport diesel engines into gas internal combustion engines with spark ignition has been substantiated. A multifunctional synthesis technology Avenir Gaz has been developed, designed to convert diesel engines of vehicles in operation into spark-ignited gas internal combustion engines operating on a cheaper and environmentally friendly gas fuel - LPG. The synthesis technology is based on three electronic microprocessor control units Avenir Gaz 37 of level "A", Avenir Gaz 37 of level "B" and Avenir Gaz 37 of level "C". It is shown that Avenir Gaz synthesis technology of level "A" allows converting diesel engines into gas internal combustion engines with LPG supply through a gas-air mixer into the intake pipeline, and level “B” provides group or sequential LPG injection by electromagnetic gas nozzles (common rail injection system ) into the intake manifold. Avenir Gaz synthesis technology of level "C" allows the use of an electronic inductive spark ignition system with an immovable voltage distributor (with two-spark or individual ignition coils).

ScienceRise ◽  
2020 ◽  
pp. 3-9
Author(s):  
Serhii Kovalov

The object of research is the multifunctional synthesis technology Avenir Gaz (of various levels of complexity), intended for converting transport diesel engines into spark-ignited gas internal combustion engines (ICE) for operation on liquefied petroleum gas (LPG). Investigated problem: the creation of an affordable synthesis technology in terms of complexity and price, which allows converting operating diesel engines into gas internal combustion engines operating on cheaper and environmentally friendly gas fuel - LPG. Main scientific results: Avenir Gaz synthesis technology (two levels of complexity, qualified as levels "A" and "B") for converting diesel engines into gas internal combustion engines is developed and created. It is shown that the conversion of diesel engines according to the Avenir Gaz synthesis technology is carried out on the basis of the developed electronic microprocessor control systems. And the basis of the control systems is the developed and manufactured two electronic microprocessor control units Avenir Gaz 37 (hereinafter – ECU Avenir Gaz 37). ECUs in accordance with the levels of complexity of synthesis technology are qualified as – ECUs Avenir Gaz 37 "A" and Avenir Gaz 37 "B". It is shown that Avenir Gaz synthesis technology of level "A" allows converting diesel engines into gas internal combustion engines with LPG supply through a gas-air mixer into the inlet pipeline. At the same time, the Avenir Gaz 37 "A" ECU, using the signal from the Hall sensor of the distributor, limits the maximum speed of the gas engine, thereby ensuring its safe operation. And the synthesis technology Avenir Gaz 37 of level "B" allows converting diesel engines into gas internal combustion engines providing group or sequential injection of LPG by electromagnetic gas nozzles (injection system of the Common Rail type) into the intake manifold in the area close to the intake valve. Area of practical use of the research results: converting diesel vehicles, including agricultural machinery (powerful wheeled and tracked tractors, combines, etc.) into spark-ignited gas combustion engines operating on LPG. An innovative technological product: Avenir Gaz synthesis technology, which allows converting the transport diesel engines in operation into gas internal combustion engines for operation on LPG. Scope of application of the innovative technological product: naturally aspirated and supercharged diesel engines with the number of cylinders from one to six, in-line and V-shaped, with a uniform alternation of working strokes.


Author(s):  
Serhii Kovalov

The expediency and advantages of using gas motor fuels, in particular, liquefied petroleum gas with respect to traditional liquid motor fuels, are shown. Technical solutions for the use of liquefied petroleum gas by diesel engines are presented and analysed. The expediency and advantages of converting diesel engines to gas spark ignition internal combustion engines with respect to conversion to gas diesel engines. Developed by the Ukrainian synthesis technology Avenir Gaz has for converting diesel engines to gas internal combustion engines with spark ignition. According to the synthesis technology of Avenir Gaz, re-equipment of diesel engines of vehicles is carried out on the basis of the universal electronic control system for gas internal combustion engines, which is based on the multifunctional electronic microprocessor control unit Avenir Gaz 37. The developed electronic microprocessor control system for gas internal combustion engines with forced ignition has a modular structure and consists of two main and a number of additional subsystems. A schematic diagram of a universal electronic control system of a gas internal combustion engine with spark ignition for operation on liquefied petroleum gas is presented. The principle of operation of the main subsystems, which include the subsystem of power management and injection of liquefied petroleum gas by gas electromagnetic injectors into the intake manifold of a gas engine, and the principle of operation of the control subsystem of the ignition with two-spark ignition coils are described. A multifunctional electronic control unit Avenir Gaz 37 has been designed and manufactured. Non-motorized tests of the electronic control unit confirmed its performance. Based on the synthesis technology of Avenir Gaz using the universal electronic control system for gas internal combustion engines with the Avenir Gaz 37 ECU, the D-240 diesel engine was converted into a gas spark ignition internal combustion engine of the D-240-LPG model. Keywords: gas internal combustion engine with forced ignition, liquefied petroleum gas (LPG), electronic microprocessor control system for gas internal combustion engines, vehicles operating on LPG.


InterConf ◽  
2021 ◽  
pp. 327-332
Author(s):  
Serhii Kovalov

The expediency of converting the transport diesel engines in operation into gas internal combustion engines with spark ignition for operation on liquefied petroleum gas has been substantiated. It is shown that the use of liquefied petroleum gas instead of diesel fuel can reduce the operating costs of vehicles. Multifunctional electronic microprocessor control systems based on Avenir Gaz 37 level “A” and Avenir Gaz 37 level “B” electronic control units have been developed. It is shown that an electronic microprocessor control system with an Avenir Gaz 37 electronic control unit of level "A" allows converting diesel engines into gas internal combustion engines with LPG supply through a gas-air mixer into the intake manifold. The test results showed the high energy and efficient performance of the gas internal combustion engine. The second electronic microprocessor control system with an electronic control unit Avenir Gaz 37 of level "B" allows converting diesel engines into gas internal combustion engines with LPG injection through an accumulative power supply subsystem and multipoint injection of liquefied petroleum gas (Common Rail type) in combination with the use of a contactless electronic subsystem ignition with a movable voltage distributor and a cylinder filling control subsystem with a charge of the working mixture. At the same time, Avenir Gaz 37 "B" ECU with a loaded B1 level software module provides group injection of LPG into the intake manifold and sequential injection with a B2 level software module. The principle of operation of each of the three subsystems, which the D-240-LPG-"B" gas engine is equipped with, is described. The tests carried out on the D-240-LPG-"B" gas engine with the Avenir Gaz 37 "B" control unit confirmed its operability.


2015 ◽  
Vol 22 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Zbigniew Korczewski

Abstract The article discusses the problem of diagnostic informativeness of exhaust gas temperature measurements in turbocharged marine internal combustion engines. Theoretical principles of the process of exhaust gas flow in turbocharger inlet channels are analysed in its dynamic and energetic aspects. Diagnostic parameters are defined which enable to formulate general evaluation of technical condition of the engine based on standard online measurements of the exhaust gas temperature. A proposal is made to extend the parametric methods of diagnosing workspaces in turbocharged marine engines by analysing time-histories of enthalpy changes of the exhaust gas flowing to the turbocompressor turbine. Such a time-history can be worked out based on dynamic measurements of the exhaust gas temperature, performed using a specially designed sheathed thermocouple. The first part of the article discusses possibilities to perform diagnostic inference about technical condition of a marine engine with pulse turbocharging system based on standard measurements of exhaust gas temperature in characteristic control cross-sections of its thermal and flow system. Selected metrological issues of online exhaust gas temperature measurements in those engines are discusses in detail, with special attention being focused on the observed disturbances and thermodynamic interpretation of the recorded measuring signal. Diagnostic informativeness of the exhaust gas temperature measurements performed in steady-state conditions of engine operation is analysed in the context of possible evaluations of technical condition of the engine workspaces, the injection system, and the fuel delivery process.


2019 ◽  
Vol 294 ◽  
pp. 05001
Author(s):  
Patryk Urbański ◽  
Maciej Bajerlein ◽  
Jerzy Merkisz ◽  
Andrzej Ziółkowski ◽  
Dawid Gallas

3D models of Szymkowiak and conventional engines were created in the Solidworks program. During the motion analysis, the characteristics of the piston path were analyzed for the two considered engine units. The imported file with the generated piston routes was used in the AVL Fire program, which simulated combustion processes in the two engines with identical initial conditions. The configurations for two different compression ratios were taken into account. The basic thermodynamic parameters occurring during the combustion process in internal combustion engines were analyzed.


Author(s):  
T. Shudo ◽  
H. Oka

Hydrogen is a clean alternative to fossil fuels for internal combustion engines and can be easily used in spark-ignition engines. However, the characteristics of the engines fueled with hydrogen are largely different from those with conventional hydrocarbon fuels. A higher burning velocity and a shorter quenching distance for hydrogen as compared with hydrocarbons bring a higher degree of constant volume and a larger heat transfer from the burning gas to the combustion chamber wall of the engines. Because of the large heat loss, the thermal efficiency of an engine fueled with hydrogen is sometimes lower than that with hydrocarbons. Therefore, the analysis and the reduction of the heat loss are crucial for the efficient utilization of hydrogen in internal combustion engines. The empirical correlations to describe the total heat transferred from the burning gas to the combustion chamber walls are often used to calculate the heat loss in internal combustion engines. However, the previous research by one of the authors has shown that the widely used heat transfer correlations cannot be properly applied to the hydrogen combustion even with adjusting the constants in them. For this background, this research analyzes the relationship between characteristics of thermophysical properties of working substance and heat transfer to the wall in a spark-ignition engine fueled with hydrogen.


Author(s):  
Naeim A. Henein ◽  
Tamer Badawy ◽  
Nilesh Rai ◽  
Walter Bryzik

Advanced electronically controlled diesel engines require a feedback signal to the ECU to adjust different operating parameters and meet demands for power, better fuel economy and low emissions. Different types of in-cylinder combustion sensors are being considered to produce this signal. This paper presents results of an experimental investigation on the characteristics of the ion current in an automotive diesel engine equipped with a common rail injection system. The engine is a 1.9 L, 4-cylinder, direct injection diesel engine. Experiments covered different engine loads and injection pressures. The relationships between the ion current, combustion parameters and engine out NO emissions and opacity are presented. The analysis of the experimental data identified possible sources of the ion current produced in diesel engines.


2013 ◽  
Author(s):  
Jorge Duarte Forero ◽  
German Amador Diaz ◽  
Fabio Blanco Castillo ◽  
Lesme Corredor Martinez ◽  
Ricardo Vasquez Padilla

In this paper, a mathematical model is performed in order to analyze the effect of the methane number (MN) on knock tendency when spark ignition internal combustion engine operate with gaseous fuels produced from different thermochemical processes. The model was validated with experimental data reported in literature and the results were satisfactory. A general correlation for estimating the autoignition time of gaseous fuels in function of cylinder temperature, and pressure, equivalence ratio and methane number of the fuel was carried out. Livengood and Wu correlation is used to predict autoignition in function of the crank angle. This criterium is a way to predict the autoignition tendency of a fuel/air mixture under engine conditions and consider the ignition delay. A chemical equilibrium model which considers 98 chemical species was used in this research in order to simulate the combustion of the gaseous fuels at differents engine operating conditions. The effect of spark advance, equivalence ratio, methane number (MN), charge (inlet pressure) and inlet temperature (manifold temperature) on engine knocking is evaluated. This work, explore the feasibility of using syngas with low methane number as fuel for commercial internal combustion engines.


Sign in / Sign up

Export Citation Format

Share Document