Copy-Move Forgery Detection Based on Euclidean Distance and Texture Feature Analysis

2021 ◽  
Vol 2 (2) ◽  
pp. 25-32
Author(s):  
Ashutosh Kumara ◽  
Neha Janu

Digital images are important part of our life. Copy and Move forgery detection techniques are designed to detect edited part of the image. The copy and move forgery techniques are based on the feature detection and matching. The techniques which are designed so far use the Euclidean distance concept for feature matching. The feature detection techniques which are much popular like Haar transformation are used for feature extraction. In this research, the PCA algorithm is used for the simplification of features which are extracted with Haar transformation. The GLCM algorithm is used for texture feature analysis of input image. In the end, Euclidean distance is used for feature matching and mismatched features are marked as forgery. The proposed approach is implemented in MALTAB and results are analyzed in terms of accuracy.

Symmetry ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 706 ◽  
Author(s):  
Chengyou Wang ◽  
Zhi Zhang ◽  
Xiao Zhou

The popularity of image editing software has made it increasingly easy to alter the content of images. These alterations threaten the authenticity and integrity of images, causing misjudgments and possibly even affecting social stability. The copy-move technique is one of the most commonly used approaches for manipulating images. As a defense, the image forensics technique has become popular for judging whether a picture has been tampered with via copy-move, splicing, or other forgery techniques. In this paper, a scheme based on accelerated-KAZE (A-KAZE) and speeded-up robust features (SURF) is proposed for image copy-move forgery detection (CMFD). It is difficult for most keypoint-based CMFD methods to obtain sufficient points in smooth regions. To remedy this defect, the response thresholds for the A-KAZE and SURF feature detection stages are set to small values in the proposed method. In addition, a new correlation coefficient map is presented, in which the duplicated regions are demarcated, combining filtering and mathematical morphology operations. Numerous experiments are conducted to demonstrate the effectiveness of the proposed method in searching for duplicated regions and its robustness against distortions and post-processing techniques, such as noise addition, rotation, scaling, image blurring, joint photographic expert group (JPEG) compression, and hybrid image manipulation. The experimental results demonstrate that the performance of the proposed scheme is superior to that of other tested CMFD methods.


2020 ◽  
Vol 12 (3) ◽  
pp. 27-44
Author(s):  
Gulivindala Suresh ◽  
Chanamallu Srinivasa Rao

Copy-move forgery (CMF) is an established process to copy an image segment and pastes it within the same image to hide or duplicate a portion of the image. Several CMF detection techniques are available; however, better detection accuracy with low feature vector is always substantial. For this, differential excitation component (DEC) of Weber Law descriptor in combination with the gray level co-occurrence matrix (GLCM) approach of texture feature extraction for CMFD is proposed. GLCM Texture features are computed in four directions on DEC and this acts as a feature vector for support vector machine classifier. These texture features are more distinguishable and it is validated through other two proposed methods based on discrete wavelet transform-GLCM (DWT-GLCM) and GLCM. Experimentation is carried out on CoMoFoD and CASIA databases to validate the efficacy of proposed methods. Proposed methods exhibit resilience against many post-processing attacks. Comparative analysis with existing methods shows the superiority of the proposed method (DEC-GLCM) with regard to detection accuracy.


Author(s):  
Choudhary Shyam Prakash ◽  
Sushila Maheshkar

In this paper, we proposed a passive method for copy-move region duplication detection using dyadic wavelet transform (DyWT). DyWT is better than discrete wavelet transform (DWT) for data analysis as it is shift invariant. Initially we decompose the input image into approximation (LL1) and detail (HH1) sub-bands. Then LL1 and HH1 sub-bands are divided into overlapping sub blocks and find the similarity between the blocks. In LL1 sub-band the copied and moved blocks have high similarity rate than the HH1 sub-band, this is just because, there is noise inconsistency in the moved blocks. Then we sort the LL1 sub-band blocks pair based on high similarity and in HH1 blocks are sorted based on high dissimilarity. Then we apply threshold to get the copied moved blocks. Here we also applied some post processing operations to check the robustness of our method and we get the satisfactory results to validate the copy move forgery detection.


Author(s):  
Choudhary Shyam Prakash ◽  
Sushila Maheshkar

In this paper, we proposed a passive method for copy-move region duplication detection using dyadic wavelet transform (DyWT). DyWT is better than discrete wavelet transform (DWT) for data analysis as it is shift invariant. Initially we decompose the input image into approximation (LL1) and detail (HH1) sub-bands. Then LL1 and HH1 sub-bands are divided into overlapping sub blocks and find the similarity between the blocks. In LL1 sub-band the copied and moved blocks have high similarity rate than the HH1 sub-band, this is just because, there is noise inconsistency in the moved blocks. Then we sort the LL1 sub-band blocks pair based on high similarity and in HH1 blocks are sorted based on high dissimilarity. Then we apply threshold to get the copied moved blocks. Here we also applied some post processing operations to check the robustness of our method and we get the satisfactory results to validate the copy move forgery detection.


Sign in / Sign up

Export Citation Format

Share Document