scholarly journals Analysis of Deforested Area Using Google Earth Engine in The Period 2001-2020 In the Apurimac Region

Author(s):  
Walquer Huacani ◽  
Nelson P. Meza ◽  
Franklin Aguirre ◽  
Darío D. Sanchez ◽  
Evelyn N. Luque

The objective of this study is to analyze the deforestation of forest cover in the Apurimac region between 2001 and 2020 using the Google Earth Engine (GEE) platform, a planetary-scale platform for the analysis of environmental data. The methodology used in the analysis of the deforested area is based on the classification of cover, using a supervised classification method developed by the University of Maryland, based on a "decision tree".

2021 ◽  
Vol 13 (8) ◽  
pp. 1424
Author(s):  
Lucas Terres de Lima ◽  
Sandra Fernández-Fernández ◽  
João Francisco Gonçalves ◽  
Luiz Magalhães Filho ◽  
Cristina Bernardes

Sea-level rise is a problem increasingly affecting coastal areas worldwide. The existence of free and open-source models to estimate the sea-level impact can contribute to improve coastal management. This study aims to develop and validate two different models to predict the sea-level rise impact supported by Google Earth Engine (GEE)—a cloud-based platform for planetary-scale environmental data analysis. The first model is a Bathtub Model based on the uncertainty of projections of the sea-level rise impact module of TerrSet—Geospatial Monitoring and Modeling System software. The validation process performed in the Rio Grande do Sul coastal plain (S Brazil) resulted in correlations from 0.75 to 1.00. The second model uses the Bruun rule formula implemented in GEE and can determine the coastline retreat of a profile by creatting a simple vector line from topo-bathymetric data. The model shows a very high correlation (0.97) with a classical Bruun rule study performed in the Aveiro coast (NW Portugal). Therefore, the achieved results disclose that the GEE platform is suitable to perform these analysis. The models developed have been openly shared, enabling the continuous improvement of the code by the scientific community.


Author(s):  
Lucas Terres de Lima ◽  
Sandra Fernández-Fernández ◽  
João Francisco Gonçalves ◽  
Luiz Magalhães Filho ◽  
Cristina Bernardes

Sea-level rise is a problem increasingly affecting coastal areas worldwide. The existence of Free and Open-Source Models to estimate the sea-level impact can contribute to better coastal man-agement. This study aims to develop and to validate two different models to predict the sea-level rise impact supported by Google Earth Engine (GEE) – a cloud-based platform for planetary-scale environmental data analysis. The first model is a Bathtub Model based on the uncertainty of projections of the Sea-level Rise Impact Module of TerrSet - Geospatial Monitoring and Modeling System software. The validation process performed in the Rio Grande do Sul coastal plain (S Brazil) resulted in correlations from 0.75 to 1.00. The second model uses Bruun Rule formula implemented in GEE and is capable to determine the coastline retreat of a profile through the creation of a simple vector line from topo-bathymetric data. The model shows a very high cor-relation (0.97) with a classical Bruun Rule study performed in Aveiro coast (NW Portugal). The GEE platform seems to be an important tool for coastal management. The models developed have been openly shared, enabling the continuous improvement of the code by the scientific commu-nity.


Irriga ◽  
2020 ◽  
Vol 25 (1) ◽  
pp. 160-169
Author(s):  
Cesar De Oliveira Ferreira Silva

CLASSIFICAÇÃO SUPERVISIONADA DE ÁREA IRRIGADA UTILIZANDO ÍNDICES ESPECTRAIS DE IMAGENS LANDSAT-8 COM GOOGLE EARTH ENGINE   CÉSAR DE OLIVEIRA FERREIRA SILVA1   1 Departamento de Engenharia Rural, Faculdade de Ciências Agronômicas, Universidade Estadual Paulista (UNESP) Campus de Botucatu. Avenida Universitária, n° 3780, Altos do Paraíso, CEP: 18610-034, Botucatu – SP, Brasil, e-mail: [email protected].     1 RESUMO   Identificar áreas de irrigação usando imagens de satélite é um desafio que encontra em soluções de computação em nuvem um grande potencial, como na ferramenta Google Earth Engine (GEE), que facilita o processo de busca, filtragem e manipulação de grandes volumes de dados de sensoriamento remoto sem a necessidade de softwares pagos ou de download de imagens. O presente trabalho apresenta uma implementação de classificação supervisionada de áreas irrigadas e não-irrigadas na região de Sorriso e Lucas do Rio Verde/MT com o algoritmo Classification and Regression Trees (CART) em ambiente GEE utilizando as bandas 2-7 do satélite Landsat-8 e os índices NDVI, NDWI e SAVI. A acurácia da classificação supervisionada foi de 99,4% ao utilizar os índices NDWI, NDVI e SAVI e de 98,7% sem utilizar esses índices, todas consideradas excelentes. O tempo de processamento médio, refeito 10 vezes, foi de 52 segundos, considerando todo o código-fonte desenvolvido desde a filtragem das imagens até a conclusão da classificação. O código-fonte desenvolvido é apresentado em anexo de modo a difundir e incentivar o uso do GEE para estudos de inteligência espacial em irrigação e drenagem por sua usabilidade e fácil manipulação.   Keywords: computação em nuvem, sensoriamento remoto, hidrologia, modelagem.     SILVA, C. O .F SUPERVISED CLASSIFICATION OF IRRIGATED AREA USING SPECTRAL INDEXES FROM LANDSAT-8 IMAGES WITH GOOGLE EARTH ENGINE     2 ABSTRACT   Identifying irrigation areas using satellite images is a challenge that finds great potential in cloud computing solutions as the Google Earth Engine (GEE) tool, which facilitates the process of searching, filtering and manipulating large volumes of remote sensing data without the need for paid software or image downloading. The present work presents an implementation of the supervised classification of irrigated and rain-fed areas in the region of Sorriso and Lucas do Rio Verde/MT with the Classification and Regression Trees (CART) algorithm in GEE environment using bands 2-7 of the Landsat- 8 and the NDVI, NDWI and SAVI indices. The accuracy of the supervised classification was 99.4% when using NDWI, NDVI and SAVI indices and 98.7% without using these indices, which were considered excellent. The average processing time, redone 10 times, was 52 seconds, considering all the source code developed from the filtering of the images to the conclusion of the classification. The developed source code is available in the appendix in order to disseminate and encourage the use of GEE for studies of spatial intelligence in irrigation and drainage due to its usability and easy manipulation.   Keywords: cloud computing, remote sensing, hydrology, modeling.


2019 ◽  
Vol 11 (7) ◽  
pp. 823 ◽  
Author(s):  
Carly Voight ◽  
Karla Hernandez-Aguilar ◽  
Christina Garcia ◽  
Said Gutierrez

Tropical forests and the biodiversity they contain are declining at an alarming rate throughout the world. Although southern Belize is generally recognized as a highly forested landscape, it is becoming increasingly threatened by unsustainable agricultural practices. Deforestation data allow forest managers to efficiently allocate resources and inform decisions for proper conservation and management. This study utilized satellite imagery to analyze recent forest cover and deforestation in southern Belize to model vulnerability and identify the areas that are the most susceptible to future forest loss. A forest cover change analysis was conducted in Google Earth Engine using a supervised classification of Landsat 8 imagery with ground-truthed land cover points as training data. A multi-layer perceptron neural network model was performed to predict the potential spatial patterns and magnitude of forest loss based on the regional drivers of deforestation. The assessment indicates that the agricultural frontier will continue to expand into recently untouched forests, predicting a decrease from 75.0% mature forest cover in 2016 to 71.9% in 2026. This study represents the most up-to-date assessment of forest cover and the first vulnerability and prediction assessment in southern Belize with immediate applications in conservation planning, monitoring, and management.


Land ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 173
Author(s):  
Changjun Gu ◽  
Yili Zhang ◽  
Linshan Liu ◽  
Lanhui Li ◽  
Shicheng Li ◽  
...  

Land use and land cover (LULC) changes are regarded as one of the key drivers of ecosystem services degradation, especially in mountain regions where they may provide various ecosystem services to local livelihoods and surrounding areas. Additionally, ecosystems and habitats extend across political boundaries, causing more difficulties for ecosystem conservation. LULC in the Kailash Sacred Landscape (KSL) has undergone obvious changes over the past four decades; however, the spatiotemporal changes of the LULC across the whole of the KSL are still unclear, as well as the effects of LULC changes on ecosystem service values (ESVs). Thus, in this study we analyzed LULC changes across the whole of the KSL between 2000 and 2015 using Google Earth Engine (GEE) and quantified their impacts on ESVs. The greatest loss in LULC was found in forest cover, which decreased from 5443.20 km2 in 2000 to 5003.37 km2 in 2015 and which mainly occurred in KSL-Nepal. Meanwhile, the largest growth was observed in grassland (increased by 548.46 km2), followed by cropland (increased by 346.90 km2), both of which mainly occurred in KSL-Nepal. Further analysis showed that the expansions of cropland were the major drivers of the forest cover change in the KSL. Furthermore, the conversion of cropland to shrub land indicated that farmland abandonment existed in the KSL during the study period. The observed forest degradation directly influenced the ESV changes in the KSL. The total ESVs in the KSL decreased from 36.53 × 108 USD y−1 in 2000 to 35.35 × 108 USD y−1 in 2015. Meanwhile, the ESVs of the forestry areas decreased by 1.34 × 108 USD y−1. This shows that the decrease of ESVs in forestry was the primary cause to the loss of total ESVs and also of the high elasticity. Our findings show that even small changes to the LULC, especially in forestry areas, are noteworthy as they could induce a strong ESV response.


Author(s):  
Di Yang

A forest patterns map over a large extent at high spatial resolution is a heavily computation task but is critical to most regions. There are two major difficulties in generating the classification maps at regional scale: large training points sets and expensive computation cost in classifier modelling. As one of the most well-known Volunteered Geographic Information (VGI) initiatives, OpenstreetMap contributes not only on road network distributions, but the potential of justify land cover and land use. Google Earth Engine is a platform designed for cloud-based mapping with a strong computing power. In this study, we proposed a new approach to generating forest cover map and quantifying road-caused forest fragmentations by using OpenstreetMap in conjunction with remote sensing dataset stored in Google Earth Engine. Additionally, the landscape metrics produced after incorporating OpenStreetMap (OSM) with the forest spatial pattern layers from our output indicated significant levels of forest fragmentation in Yucatan peninsula.


Author(s):  
Di Yang

A forest patterns map over a large extent at high spatial resolution is a heavily computation task but is critical to most regions. There are two major difficulties in generating the classification maps at regional scale: large training points sets and expensive computation cost in classifier modelling. As one of the most well-known Volunteered Geographic Information (VGI) initiatives, OpenstreetMap contributes not only on road network distributions, but the potential of justify land cover and land use. Google Earth Engine is a platform designed for cloud-based mapping with a strong computing power. In this study, we proposed a new approach to generating forest cover map and quantifying road-caused forest fragmentations by using OpenstreetMap in conjunction with remote sensing dataset stored in Google Earth Engine. Additionally, the landscape metrics produced after incorporating OpenStreetMap (OSM) with the forest spatial pattern layers from our output indicated significant levels of forest fragmentation in Yucatan peninsula.


Forests ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 518 ◽  
Author(s):  
Natalia Quintero ◽  
Olga Viedma ◽  
Itziar R. Urbieta ◽  
José M. Moreno

Annual Land Use and Land Cover (LULC) maps are needed to identify the interaction between landscape changes and wildland fires. Objectives: In this work, we determined fire hazard changes in a representative Mediterranean landscape through the classification of annual LULC types and fire perimeters, using a dense Landsat Time Series (LTS) during the 1984–2017 period, and MODIS images. Methods: We implemented a semiautomatic process in the Google Earth Engine (GEE) platform to generate annual imagery free of clouds, cloud shadows, and gaps. We compared LandTrendr (LT) and FormaTrend (FT) algorithms that are widely used in LTS analysis to extract the pixel tendencies and, consequently, assess LULC changes and disturbances such as forest fires. These algorithms allowed us to generate the following change metrics: type, magnitude, direction, and duration of change, as well as the prechange spectral values. Results and conclusions: Our results showed that the FT algorithm was better than the LT algorithm at detecting low-severity changes caused by fires. Likewise, the use of the change metrics’ type, magnitude, and direction of change increased the accuracy of the LULC maps by 4% relative to the ones obtained using only spectral and topographic variables. The most significant hazardous LULC change processes observed were: deforestation and degradation (mainly by fires), encroachment (i.e., invasion by shrublands) due to agriculture abandonment and forest fires, and hazardous densification (from open forests and agroforestry areas). Although the total burned area has decreased significantly since 1985, the landscape fire hazard has increased since the second half of the twentieth century. Therefore, it is necessary to implement fire management plans focused on the sustainable use of shrublands and conifer forests; this is because the stability in these hazardous vegetation types is translated into increasing fuel loads, and thus an elevated landscape fire hazard.


Sign in / Sign up

Export Citation Format

Share Document