scholarly journals Characterization and Antioxidant Activity of Mahogany Bark Extract-loaded Chitosan Nanoparticles

2017 ◽  
Vol 4 (1) ◽  
pp. 94-99
Author(s):  
Syamsul Falah ◽  
Sulistiyani Sulistiyani ◽  
Dimas Andrianto

Nanoparticles-based drug delivery has been recognized to improve the solubility of poorly water-soluble drugs, prolong the half-life of drug systematic circulation by reducing immunogenicity, and releases drugs at a sustain rate. The present study reports on the characterization of mahogany bark extract-loaded chitosan nanoparticles and their antioxidant activity.  Mahogany bark meal was extracted in boiled water for four hours.  Chitosan-sodium tripolyphosphate (STPP) nanospheres were sonicated with ultrasonicator to obtain chitosan-STTP nanocapsules for 30 and 60 min and then were dried with spray dryer. The chitosan-STPP nanocapsules loaded by mahogany extract were then analysed for surface morphology and physical state by scanning electron microscope (SEM) and X ray diffraction (XRD), respectively. Antioxidant activity of the nanoparticles was evaluated by scavenging the 1,1-diphenyl-2-picrylhydrazyl (DPPH) using free radical method. Based on SEM data, the nanoparticle shapes were viewed to adhere to spherical shape. Spherical chitosan-STTP nanoparticles loaded with mahogany bark extract were obtained in the size range of 480 ~ 2000 nm and 240 ~ 1000 nm for 30 and 60 min of ultrasonication time, respectively. The antioxidant activity of the nanoparticles was lower than that of the native mahogany bark extract. 

2010 ◽  
Vol 2010 ◽  
pp. 1-5 ◽  
Author(s):  
Hong-liang Zhang ◽  
Si-hui Wu ◽  
Yi Tao ◽  
Lin-quan Zang ◽  
Zheng-quan Su

The objective of this study was to investigate the potential of water soluble chitosan as a carrier in the preparation of protein-loaded nanoparticles. Nanoparticles were prepared by ionotropic gelation of water-soluble chitosan (WSC) with sodium tripolyphosphate (TPP). Bovine serum albumin (BSA) was applied as a model drug. The size and morphology of the nanoparticles were investigated as a function of the preparation conditions. The particles were spherical in shape and had a smooth surface. The size range of the nanoparticles was between 100 and 400 nm. Result of the in vitro studies showed that the WSC nanoparticles enhance and prolong the intestinal absorption of BSA. These results also indicated that WSC nanoparticles were a potential protein delivery system.


Processes ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 834 ◽  
Author(s):  
Hongxia Su ◽  
Chongxing Huang ◽  
Ying Liu ◽  
Song Kong ◽  
Jian Wang ◽  
...  

In this study, different amounts of cinnamomum essential oil (CEO) were encapsulated in chitosan nanoparticles (NPs) (CS-NPs) through oil-in-water emulsification and ionic gelation. An ultraviolet-visible spectrophotometer, Fourier-transform infrared spectroscopy, synchronous thermal analysis, and X-ray diffraction were employed to analyze the CEO encapsulation. As observed by field-emission scanning electron microscopy, NP size analysis and zeta potential, the prepared CS-NPs, containing CEO (CS-CEO), were spherical with uniformly distributed sizes (diameters: 190–340 nm). The ranges of encapsulation efficiency (EE) and loading capacity (LC) were 4.6–32.9% and 0.9–10.4%, with variations in the starting weight ratio of CEO to CS from 0.11 to 0.53 (w/w). It was also found that the antioxidant activity of the CS-NPs loaded with CEO increased as the EE increased. The active ingredients of the CEO were prevented from being volatilized, significantly improving the chemical stability. The antioxidant activity of CS-CEO was higher than that of the free CEO. These results indicate the promising potential of CS-CEO as an antioxidant for food processing, and packaging applications.


NANO ◽  
2013 ◽  
Vol 08 (04) ◽  
pp. 1350042 ◽  
Author(s):  
JING WANG ◽  
LI GUO ◽  
LI FANG MA

In this paper, we firstly synthesized glycyrrhetinic acid-modified double amino-terminated poloxamer 188 (GA–NH–POLO–NH–GA). The structure of the synthesized compound was confirmed by 1H-NMR and Fourier transform infrared (FT-IR) spectroscopy. Then the nanoparticles composed of GA–NH–POLO–NH–GA/chitosan (GA–NH–POLO–NH–GA/CTS) were prepared by an ionic gelation process. The characterization of the nanoparticles was measured by dynamic light scattering (DLS) and scanning electron microscope (SEM). The results showed that the nanoparticles were well dispersed with a spherical shape and the particle size was distributed between 100 nm and 300 nm. The cytotoxicity based on MTT assay against cells (QGY-7703 cells and L929 cells) showed that the nanoparticles had low toxicity and good biocompatibility. The encapsulation efficiency and drug loading of 5-fluorouracil-loaded nanoparticles (5-FU nanoparticles) were measured by high-performance liquid chromatography (HPLC) and fluorescence spectroscopy, ultraviolet-visible (UV-vis) absorbance. The encapsulation of 5-Fu-loaded CTS nanoparticles was 12.8% and the drug loading was 2.9%, while the encapsulation of 5-Fu-loaded GA–NH–POLO–NH–GA/CTS nanoparticles was 20.9% and the drug loading was 3.36%. The release profile showed that the GA–NH–POLO–NH–GA/CTS nanoparticles were available for sustained release of 5-Fu. The GA–NH–POLO–NH–GA/CTS nanoparticles have a higher affinity to the QGY-7703 cells, so indicated that the GA–NH–POLO–NH–GA/CTS nanoparticles have the capacity of liver-targeting in vitro.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
F. Piran ◽  
Z. Khoshkhoo ◽  
S. E. Hosseini ◽  
M. H. Azizi

Applying bioactive ingredients in the formulation of foods instead of artificial preservatives is problematic because bioactive ingredients are unstable and sensitive to environmental conditions. The present study aimed to control the antioxidant activity of green tea extract (GT) through encapsulating in chitosan nanoparticles (CS-NP). The synthesized nanoparticles were analyzed by using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD). The encapsulation efficiency (EE), particle size, zeta potential, and polydispersity index (PDI) of GT-loaded CS-nanoparticles (CS-NP-GT) were assessed. Based on the results, the particle size and zeta potential related to the ratio of CS to GT of 1 : 0.5 were obtained as 135.43 ± 2.52 nm and 40.40 ± 0.2 mV, respectively. Furthermore, the results of FT-IR and XRD confirmed the validity of encapsulating GT in CS-NP. In addition, the antioxidant activity of GT increased after nanoencapsulation since the IC50 value of CS-NP-GT decreased to 6.13 ± 0.12 μg/ml. Finally, applying these particles for delivering GT polyphenols in foods is regarded as promising.


2021 ◽  
Vol 6 (1) ◽  
pp. 1-6
Author(s):  
Fahrauk Faramayuda ◽  
Faizal Hermanto ◽  
Ari Sri Windyaswari ◽  
Soraya Riyanti ◽  
Viola Aditya Nurhayati

Bungur  (Lagerstroemia loudonii T. B) is a type of plant widely grown in Indonesia and can be found in teak forests, mixed forests, and is found as ornamental plants or protective trees on the roadside. In the fruit section, Lagerstroemia loudonii is used as antituberculous and antimalarial. On the bark, the part is used as antidiarrheal. Based on some parts of the Lagerstroemia loudonii  plants' activity data, this plant has the potential to be developed into traditional medicine. Standardized traditional medicine material is necessary to identify efficacious compounds and characterization in some parts of Lagerstroemia loudonii. The purpose of this research is to develop Lagerstroemia loudonii into traditional herbal medicine or standardized herbal medicine. Identification of efficacious compounds and characterization of crude leaf drugs, bark, stems, and fruit of Lagerstroemia loudonii. The phytochemical screening phase of the crude drugs of leaves, bark, stems, and fruit ofLagerstroemia loudonii against includes examining alkaloids, flavonoids,  quinones, tannins, polyphenols, saponins, steroids and triterpenes, monoterpenoids and sesquiterpenoids. The determination of the characteristics of raw material carried out includes nonspecific parameters. Nonspecific parameters are the determination of total ash content, water-soluble ash content, acid insoluble ash content. each experiment was carried out three times and calculated the average yield and deviation.  Identification results of the class of efficacious compounds in some parts of the Lagerstroemia loudonii  plant are on the leaves and fruits containing alkaloids, flavonoids, saponins, quinones, tannins, polyphenols, monoterpenoids, and sesquiterpenoids as well as steroids and triterpenoids. At the bark and stem, the bark contains alkaloids, flavonoids, saponins, quinones, tannins, polyphenols, monoterpenoids, and sesquiterpenoids. Characterization results of Lagerstroemia loudonii  leaf extract total ash content 4.45 ± 0.30% w/w, water-soluble ash content 4.08 ± 0.27% w/w, acid insoluble ash content 0.59 ± 0.06% w/w, the extract specific gravity was 0.59 ± 0.063. Lagerstroemia loudonii  stem bark extract, total ash content 1.94 ± 0.12% w/w, water-soluble ash content 1.47 ± 0.03% w/w, acid insoluble ash content 0.24 ± 0.02% w/w, the extract specific gravity is 0.82 ± 0.01. Lagerstroemia loudonii  stem extract, total ash content3.18 ± 0.16% w/w, water-soluble ash content 2.36 ± 0.38% w/w, acid insoluble ash content 0.43 ± 0.07% w/w, extract specific grafity 0.81 ± 0.01. Lagerstroemia loudonii  fruit extract, total ash content 11.45 ± 1.16%w/w, water-soluble ash content 10.1 ± 1.49% w/w, acid insoluble ash content 1.46 ± 0.88% w/w,extract specific grafity 0.81 ± 0.01. Based on phytochemical screening data and the characterization of bungur plants potential to be developed into raw materials for traditional medicineKeywords: Lagerstroemia loudonii, secondary metabolite, raw material characterization


Sign in / Sign up

Export Citation Format

Share Document