scholarly journals SOME BOUNDARY VALUE PROBLEMS WITH INVOLUTION FOR THE NONLOCAL POISSON EQUATION

2020 ◽  
Vol 71 (3) ◽  
pp. 74-83
Author(s):  
M. Koshanova ◽  
◽  
М. Muratbekova ◽  
B. Turmetov ◽  
◽  
...  

In this paper, we study new classes of boundary value problems for a nonlocal analogue of the Poisson equation. The boundary conditions, as well as the nonlocal Poisson operator, are specified using transformation operators with orthogonal matrices. The paper investigates the questions of solvability of analogues of boundary value problems of the Dirichlet and Neumann type. It is proved that, as in the classical case, the analogue of the Dirichlet problem is unconditionally solvable. For it, theorems on the existence and uniqueness of the solution to the problem are proved. An explicit form of the Green's function, a generalized Poisson kernel, and an integral representation of the solution are found. For an analogue of the Neumann problem, an exact solvability condition is found in the form of a connection between integrals of given functions. The Green's function and an integral representation of the solution of the problem under study are also constructed.

Author(s):  
B.Kh. Turmetov ◽  
V.V. Karachik

Transformations of the involution type are considered in the space $R^l$, $l\geq 2$. The matrix properties of these transformations are investigated. The structure of the matrix under consideration is determined and it is proved that the matrix of these transformations is determined by the elements of the first row. Also, the symmetry of the matrix under study is proved. In addition, the eigenvectors and eigenvalues of the matrix under consideration are found explicitly. The inverse matrix is also found and it is proved that the inverse matrix has the same structure as the main matrix. The properties of the nonlocal analogue of the Laplace operator are introduced and studied as applications of the transformations under consideration. For the corresponding nonlocal Poisson equation in the unit ball, the solvability of the Dirichlet and Neumann boundary value problems is investigated. A theorem on the unique solvability of the Dirichlet problem is proved, an explicit form of the Green's function and an integral representation of the solution are constructed, and the order of smoothness of the solution of the problem in the Hölder class is found. Necessary and sufficient conditions for the solvability of the Neumann problem, an explicit form of the Green's function, and the integral representation are also found.


1992 ◽  
Vol 35 (3) ◽  
pp. 371-375
Author(s):  
Nezam Iraniparast

AbstractA method will be introduced to solve problems utt — uss = h(s, t), u(t,t) - u(1+t,1 - t), u(s,0) = g(s), u(1,1) = 0 and for (s, t) in the characteristic triangle R = {(s,t) : t ≤ s ≤ 2 — t, 0 ≤ t ≤ 1}. Here represent the directional derivatives of u in the characteristic directions e1 = (— 1, — 1) and e2 = (1, — 1), respectively. The method produces the symmetric Green's function of Kreith [1] in both cases.


1987 ◽  
Vol 30 (1) ◽  
pp. 28-35 ◽  
Author(s):  
P. W. Eloe

AbstractLet G(x,s) be the Green's function for the boundary value problem y(n) = 0, Ty = 0, where Ty = 0 represents boundary conditions at two points. The signs of G(x,s) and certain of its partial derivatives with respect to x are determined for two classes of boundary value problems. The results are also carried over to analogous classes of boundary value problems for difference equations.


Sign in / Sign up

Export Citation Format

Share Document