scholarly journals Homeopathic drug standardization through biological evaluations: An untrodden avenue

Author(s):  
Mahendra Vaijnath Kardile ◽  
Chandaragouda Patil ◽  
Ali Haidar ◽  
Umesh Bharat Mahajan ◽  
Sameer Goyal

Background: There is a dearth of chemico-analytical or instrumental methods for standardization and quality control of higher dilutions of homeopathic drugs. Aim: This review highlights the challenges in standardization of anti-inflammatory homeopathic drugs and suggests a battery of biological assays for their standardization. Methods: We retrieved a total 57 scientific reports from the experimental studies and scientific reviews published between January 1999 and June 2014 related to anti-inflammatory homeopathic drugs and their high dilutions. These comprised of 18 reports on preclinical evaluation, 15 on source materials, 9 on isolated constituents and 15 studies on in-vitro experiments. Few recent citations which supported the initial studies were added later during the compilation of the manuscript. Conclusion: Standardization and quality control of homeopathic mother tinctures and high dilutions warrants an urgent attention. As biological activities are observed to be attributed to the high dilutions which are practically devoid of active ingredients, their standardization may be done through the suggested battery of biological investigations. It is suggested that the current methods of standardization of homeopathic drugs need to be upgraded to include sensitive, reproducible and relevant biological assays so that the end users are assured of the quality, efficacy, and safety of homeopathic dilutions.

2020 ◽  
Vol 21 (10) ◽  
pp. 927-938 ◽  
Author(s):  
Roktim Gogoi ◽  
Rikraj Loying ◽  
Neelav Sarma ◽  
Twahira Begum ◽  
Sudin K. Pandey ◽  
...  

Background: The essential oil of methyl eugenol rich Cymbopogon khasianus Hack. was evaluated and its bioactivities were compared with pure methyl eugenol. So far, methyl eugenol rich essential oil of lemongrass was not studied for any biological activities; hence, the present study was conducted. Objective: This study examined the chemical composition of essential oil of methyl eugenol rich Cymbopogon khasianus Hack., and evaluated its antioxidant, anti-inflammatory, antimicrobial, and herbicidal properties and genotoxicity, which were compared with pure compound, methyl eugenol. Material and Methods: Methyl eugenol rich variety of Cymbopogon khasianus Hack., with registration no. INGR18037 (c.v. Jor Lab L-9) was collected from experimental farm CSIR-NEIST, Jorhat, Assam (26.7378°N, 94.1570°E). The essential oil wasobtained by hydro-distillation using a Clevenger apparatus. The chemical composition of the essential oil was evaluated using GC/MS analysis and its antioxidant (DPPH assay, reducing power assay), anti-inflammatory (Egg albumin denaturation assay), and antimicrobial (Disc diffusion assay, MIC) properties, seed germination effect and genotoxicity (Allium cepa assay) were studied and compared with pure Methyl Eugenol compound (ME). Results: Major components detected in the Essential Oil (EO) through Gas chromatography/mass spectroscopy analysis were methyl eugenol (73.17%) and β-myrcene (8.58%). A total of 35components were detected with a total identified area percentage of 98.34%. DPPH assay revealed considerable antioxidant activity of methyl eugenol rich lemongrass essential oil (IC50= 2.263 μg/mL), which is lower than standard ascorbic acid (IC50 2.58 μg/mL), and higher than standard Methyl Eugenol (ME) (IC50 2.253 μg/mL). Methyl eugenol rich lemongrass EO showed IC50 38.00 μg/mL, ME 36.44 μg/mL, and sodium diclofenac 22.76 μg/mL, in in-vitro anti-inflammatory test. Moderate antimicrobial activity towards the 8 tested microbes was shown by methyl eugenol rich lemongrass essential oil whose effectiveness against the microbes was less as compared to pure ME standard. Seed germination assay further revealed the herbicidal properties of methyl eugenol rich essential oil. Moreover, Allium cepa assay revealed moderate genotoxicity of the essential oil. Conclusion: This paper compared the antioxidant, anti-inflammatory, antimicrobial, genotoxicity and herbicidal activities of methyl eugenol rich lemongrass with pure methyl eugenol. This methyl eugenol rich lemongrass variety can be used as an alternative of methyl eugenol pure compound. Hence, the essential oil of this variety has the potential of developing cost-effective, easily available antioxidative/ antimicrobial drugs but its use should be under the safety range of methyl eugenol and needs further clinical trials.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2506
Author(s):  
Wamidh H. Talib ◽  
Ahmad Riyad Alsayed ◽  
Alaa Abuawad ◽  
Safa Daoud ◽  
Asma Ismail Mahmod

Melatonin is a pleotropic molecule with numerous biological activities. Epidemiological and experimental studies have documented that melatonin could inhibit different types of cancer in vitro and in vivo. Results showed the involvement of melatonin in different anticancer mechanisms including apoptosis induction, cell proliferation inhibition, reduction in tumor growth and metastases, reduction in the side effects associated with chemotherapy and radiotherapy, decreasing drug resistance in cancer therapy, and augmentation of the therapeutic effects of conventional anticancer therapies. Clinical trials revealed that melatonin is an effective adjuvant drug to all conventional therapies. This review summarized melatonin biosynthesis, availability from natural sources, metabolism, bioavailability, anticancer mechanisms of melatonin, its use in clinical trials, and pharmaceutical formulation. Studies discussed in this review will provide a solid foundation for researchers and physicians to design and develop new therapies to treat and prevent cancer using melatonin.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 991
Author(s):  
Melanie S. Matos ◽  
José D. Anastácio ◽  
Cláudia Nunes dos Santos

Inflammation is a crucial and complex process that reestablishes the physiological state after a noxious stimulus. In pathological conditions the inflammatory state may persist, leading to chronic inflammation and causing tissue damage. Sesquiterpene lactones (SLs) are composed of a large and diverse group of highly bioactive plant secondary metabolites, characterized by a 15-carbon backbone structure. In recent years, the interest in SLs has risen due to their vast array of biological activities beneficial for human health. The anti-inflammatory potential of these compounds results from their ability to target and inhibit various key pro-inflammatory molecules enrolled in diverse inflammatory pathways, and prevent or reduce the inflammatory damage on tissues. Research on the anti-inflammatory mechanisms of SLs has thrived over the last years, and numerous compounds from diverse plants have been studied, using in silico, in vitro, and in vivo assays. Besides their anti-inflammatory potential, their cytotoxicity, structure–activity relationships, and pharmacokinetics have been investigated. This review aims to gather the most relevant results and insights concerning the anti-inflammatory potential of SL-rich extracts and pure SLs, focusing on their effects in different inflammatory pathways and on different molecular players.


Blood ◽  
2012 ◽  
Vol 119 (11) ◽  
pp. 2443-2451 ◽  
Author(s):  
Tatiana Akimova ◽  
Ulf H. Beier ◽  
Yujie Liu ◽  
Liqing Wang ◽  
Wayne W. Hancock

Abstract Clinical and experimental studies show that inhibition of histone/protein deacetylases (HDAC) can have important anti-neoplastic effects through cytotoxic and proapoptotic mechanisms. There are also increasing data from nononcologic settings that HDAC inhibitors (HDACi) can exhibit useful anti-inflammatory effects in vitro and in vivo, unrelated to cytotoxicity or apoptosis. These effects can be cell-, tissue-, or context-dependent and can involve modulation of specific inflammatory signaling pathways as well as epigenetic mechanisms. We review recent advances in the understanding of how HDACi alter immune and inflammatory processes, with a particular focus on the effects of HDACi on T-cell biology, including the activation and functions of conventional T cells and the unique T-cell subset, composed of Foxp3+ T-regulatory cells. Although studies are still needed to tease out details of the various biologic roles of individual HDAC isoforms and their corresponding selective inhibitors, the anti-inflammatory effects of HDACi are already promising and may lead to new therapeutic avenues in transplantation and autoimmune diseases.


2017 ◽  
Vol 313 (4) ◽  
pp. L710-L721 ◽  
Author(s):  
Yunbo Ke ◽  
Olga V. Oskolkova ◽  
Nicolene Sarich ◽  
Yufeng Tian ◽  
Albert Sitikov ◽  
...  

Prostaglandins (PG), the products of cyclooxygenase-mediated conversion of arachidonic acid, become upregulated in many situations including allergic response, inflammation, and injury, and exhibit a variety of biological activities. Previous studies described barrier-enhancing and anti-inflammatory effects of PGE2 and PGI2 on vascular endothelial cells (EC). Yet, the effects of other PG members on EC barrier and inflammatory activation have not been systematically analyzed. This study compared effects of PGE2, PGI2, PGF2α, PGA2, PGJ2, and PGD2 on human pulmonary EC. EC permeability was assessed by measurements of transendothelial electrical resistance and cell monolayer permeability for FITC-labeled tracer. Anti-inflammatory effects of PGs were evaluated by analysis of expression of adhesion molecule ICAM1 and secretion of soluble ICAM1 and cytokines by EC. PGE2, PGI2, and PGA2 exhibited the most potent barrier-enhancing effects and most efficient attenuation of thrombin-induced EC permeability and contractile response, whereas PGI2 effectively suppressed thrombin-induced permeability but was less efficient in the attenuation of prolonged EC hyperpermeability caused by interleukin-6 or bacterial wall lipopolysaccharide, LPS. PGD2 showed a modest protective effect on the EC inflammatory response, whereas PGF2α and PGJ2 were without effect on agonist-induced EC barrier dysfunction. In vivo, PGE2, PGI2, and PGA2 attenuated LPS-induced lung inflammation, whereas PGF2α and PGJ2 were without effect. Interestingly, PGD2 exhibited a protective effect in the in vivo model of LPS-induced lung injury. This study provides a comprehensive analysis of barrier-protective and anti-inflammatory effects of different prostaglandins on lung EC in vitro and in vivo and identifies PGE2, PGI2, and PGA2 as prostaglandins with the most potent protective properties.


Foods ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1039
Author(s):  
Li-Ping Sun ◽  
Feng-Feng Shi ◽  
Wen-Wen Zhang ◽  
Zhi-Hao Zhang ◽  
Kai Wang

Safflower honey is a unique type of monofloral honey collected from the nectar of Carthamus tinctorius L. in the Apis mellifera colonies of northwestern China. Scant information is available regarding its chemical composition and biological activities. Here, for the first time, we investigated this honey’s chemical composition and evaluated its in vitro antioxidant and anti-inflammatory activities. Basic physicochemical parameters of the safflower honey samples in comparison to established quality standards suggested that safflower honeys presented a good level of quality. The in vitro antioxidant tests showed that extract from Carthamus tinctorius L. honey (ECH) effectively scavenged DPPH and ABTS+ free radicals. In lipopolysaccharides (LPS) activated murine macrophages inflammatory model, ECH treatment to the cells inhibited the release of nitric oxide and down-regulated the expressions of inflammatory-relating genes (iNOS, IL-1β, TNF-α and MCP-1). The expressions of the antioxidant genes TXNRD, HO-1, and NQO-1, were significantly boosted in a concentration-dependent manner. ECH decreased the phosphorylation of IκBα and inhibited the nuclear entry of the NF-κB-p65 protein, in LPS-stimulated Raw 264.7 cells, accompany with the increased expressions of Nrf-2 and HO-1, suggesting that ECH achieved the anti-inflammatory effects by inhibiting NF-κB signal transduction and boosting the antioxidant system via activating Nrf-2/HO-1 signaling. These results, taken together, indicated that safflower honey has great potential into developing as a high-quality agriproduct.


Biomolecules ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 241 ◽  
Author(s):  
Walter Ferreira da Silva Júnior ◽  
Danielle Lima Bezerra de Menezes ◽  
Luana Carvalho de Oliveira ◽  
Letícia Scherer Koester ◽  
Patrícia Danielle Oliveira de Almeida ◽  
...  

α, β amyrin (ABAM) is a natural mixture of pentacyclic triterpenes that has a wide range of biological activities. ABAM is isolated from the species of the Burseraceae family, in which the species Protium is commonly found in the Amazon region of Brazil. The aim of this work was to develop inclusion complexes (ICs) of ABAM and β-cyclodextrin (βCD) and hydroxypropyl-β-cyclodextrin (HPβCD) by physical mixing (PM) and kneading (KN) methods. Interactions between ABAM and the CD’s as well as the formation of ICs were confirmed by physicochemical characterization in the solid state by Fourier transform infrared (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetry (TG) and differential scanning calorimetry (DSC). Physicochemical characterization indicated the formation of ICs with both βCD and HPβCD. Such ICs were able to induce changes in the physicochemical properties of ABAM. In addition, the formation of ICs with cyclodextrins showed to be an effective and promising alternative to enhance the anti-inflammatory activity and safety of ABAM.


Processes ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 202 ◽  
Author(s):  
Manar A. Eissa ◽  
Yumi Z. H-Y. Hashim ◽  
Dina M. El-Kersh ◽  
Saripah S. S. Abd-Azziz ◽  
Hamzah Mohd. Salleh ◽  
...  

The Aquilaria malaccensis species of the genus Aquilaria is an abundant source of agarwood resin and many bioactive phytochemicals. Recent data regarding the chemical constituents and biological activities of Aquilaria leaves led us to attempt to qualitatively profile the metabolites of Aquilaria malaccensis leaves from a healthy, noninoculated tree through phytochemical screening, GC-MS, and LC/Q-TOF-MS. The present work is also the first to report the antilipoxygenase activity of A. malaccensis leaves from healthy noninoculated tree and investigate its toxicity on oral mucosal cells. A total of 53 compounds were tentatively identified in the extract, some of which have been described in literature as exhibiting anti-inflammatory activity. A number of compounds were identified for the first time in the extract of A. malaccensis leaf, including quercetin, quercetin-O-hexoside, kaempferol-O-dirhamnoside, isorhamnetin-O-hexoside, syringetin-O-hexoside, myricetin, tetrahydroxyflavanone, hesperetin, sissotrin, and lupeol. The antilipoxygenase assay was used to determine the lipoxygenase (LOX) inhibitory potential of the extract, while a WST-1 assay was conducted to investigate the effect of the extract on oral epithelial cells (OEC). The extract implied moderate anti-LOX activity with IC50 value of 71.6 µg/mL. Meanwhile, the cell viability of OEC ranged between 92.55% (10 µg/mL)–76.06% ± (100 µg/mL) upon treatment, indicating some potential toxicity risks. The results attained encourage future studies of the isolation of bioactive compounds from Aquilaria malaccensis leaves, as well as further investigation on the anti-inflammatory mechanisms and toxicity associated with their use.


2020 ◽  
Vol 88 (2) ◽  
pp. 26
Author(s):  
Anca Zanfirescu ◽  
Georgiana Nitulescu ◽  
Gheorghe Stancov ◽  
Denise Radulescu ◽  
Cosmin Trif ◽  
...  

Medicinal plants hold a significant place as alternative treatments available for inflammatory diseases, with many phytoconstituents being frequently tested in vitro for their biological activities. In the current study, we investigated the in vivo anti-inflammatory properties of a novel active gel formulation, combining Achillea millefolium and Taxodium distichum essential oils with extracts of Aesculus hippocastanum seeds and Plantago lanceolata leaves. The toxicity of the obtained extracts and volatile oils was determined using the invertebrate model based on Daphnia magna. Anti-inflammatory potential was evaluated by the plethysmometric method on Wistar rats, expressed as the inhibition of the inflammatory oedema (%IIO), while the antinociceptive response was determined on NMRI mice, according to the tail-flick latency method. The tested gel’s efficacy was similar to the 5% diclofenac standard (maximal %IIO of 42.01% vs. 48.70%, respectively), with the anti-inflammatory effect being observed sooner than for diclofenac. Our active gel also produced a significant prolongation of tail-flick latencies at both 60 and 120 min, comparable to diclofenac. Consequently, we can imply that the active constituents present in vivo anti-inflammatory properties, and the prepared gel may be suited for use as an alternative treatment of topical inflammatory conditions.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Lan Zheng ◽  
Yaohong Ma ◽  
Yunjuan Zhang ◽  
Qingjun Meng ◽  
Junhui Yang ◽  
...  

This study demonstrates that Thelephora ganbajun had a strong ability to absorb zinc, and zinc can be compartmentally stored in the small vesicles and mainly accumulated in the form of zinc-enriched polysaccharides (zinc content was 25.0±1.27 mg/g). Mycelia zinc polysaccharides (MZPS) and its fractions were isolated. The main fraction (MZPS-2) with the highest antioxidant activity in vitro was composed of mannose : galacturonic acid : glucose : galactose in a molar ratio of 61.19 : 1 : 39.67 : 48.67, with a weight-averaged molecular weight of 5.118×105 Da. MZPS-2 had both α-pyranose and β-pyranose configuration and had a triple helical conformation. By establishing zebrafish models, we found that MZPS-2 can significantly scavenge free radicals, reduce the generation of reactive oxygen species caused by inflammation, and inhibit the recruitment of neutrophils toward the injury site. Therefore, MZPS-2 exhibited antioxidant and anti-inflammatory effects and can be used as a zinc supplement with specific biological activities to alleviate zinc deficiency complications, such as chronic oxidative stress or inflammation.


Sign in / Sign up

Export Citation Format

Share Document