scholarly journals Role of ambient ammonia in particulate ammonium formation at a rural site in the North China Plain

2017 ◽  
Author(s):  
Zhaoyang Meng ◽  
Xiaobin Xu ◽  
Weili Lin ◽  
Yulin Xie ◽  
Bo Song ◽  
...  

Abstract. The real-time measurements of NH3 and trace gases were conducted, in conjunction with semi-continuous measurements of water-soluble ions in PM2.5 at a rural site in the North China Plain (NCP) from May to September 2013 in order to better understand of chemical characteristics for ammonia, and of the impact on formation of secondary ammonium aerosols in the NCP. Extremely high NH3 and NH4+ concentrations were observed after a precipitation event within 7–10 days following urea application. Elevated NH3 levels coincided with elevated NH4+, suggesting that NH3 plays a vital role in enhancing particulate ammonium. For the sampling period, the average oxidation/conversion ratios for SO42− (SOR), NO3− (NOR) and NH4+ (NHR) were estimated to be 64 %, 24 % and 30 %, respectively. The increased NH3 concentrations mainly from agricultural activities, coincided with the prevailing meteorological conditions could promote the secondary transformation, resulting in higher hourly SOR, NOR and NHR. The concentrations of NH3, NH4+, and NHR had clear diurnal variations, which could be attributed to their sources, meteorological conditions, and formation mechanisms. The back trajectory analysis indicates that the transport of air masses from the North China Plain region contributed to the atmospheric NH3 variations, and both regional sources and long-distance transport from southeast played important roles in the observed ammonium aerosol at rural site in the NCP. The findings of this study are expected to facilitate developing future NH3 emission control policies for the North China Plain.

2018 ◽  
Vol 18 (1) ◽  
pp. 167-184 ◽  
Author(s):  
Zhaoyang Meng ◽  
Xiaobin Xu ◽  
Weili Lin ◽  
Baozhu Ge ◽  
Yulin Xie ◽  
...  

Abstract. The real-time measurements of NH3 and trace gases were conducted, in conjunction with semi-continuous measurements of water-soluble ions in PM2.5 at a rural site in the North China Plain (NCP) from May to September 2013 in order to better understand chemical characteristics of ammonia and the impact of secondary ammonium aerosols on formation in the NCP. Extremely high NH3 and NH4+ concentrations were observed after a precipitation event within 7–10 days following urea application. Elevated NH3 levels coincided with elevated NH4+, indicating that NH3 likely influenced particulate ammonium mass. For the sampling period, the average conversion ∕ oxidation ratios for NH4+ (NHR), SO42- (SOR), and NO3- (NOR) were estimated to be 0.30, 0.64, and 0.24, respectively. The increased NH3 concentrations, mainly from agricultural activities and regional transport, coincided with the prevailing meteorological conditions. The high NH3 level with NHR of about 0.30 indicates that the emission of NH3 in the NCP is much higher than needed for aerosol acid neutralisation, and NH3 plays an important role in the formation of secondary aerosols as a key neutraliser. The hourly data obtained were used to investigate gas–aerosol partitioning characteristics using the thermodynamic equilibrium model ISORROPIA-II. Modelled SO42-, NO3-, and NH3 values agree well with the measurements, while the modelled NH4+ values largely underestimate the measurements. Our observation and modelling results indicate that strong acids in aerosol are completely neutralised. Additional NH4+ exists in aerosol, probably a result of the presence of a substantial amount of oxalic and other diacids.


2018 ◽  
Vol 18 (15) ◽  
pp. 11261-11275 ◽  
Author(s):  
Liang Wen ◽  
Likun Xue ◽  
Xinfeng Wang ◽  
Caihong Xu ◽  
Tianshu Chen ◽  
...  

Abstract. Nitrate aerosol makes up a significant fraction of fine particles and plays a key role in regional air quality and climate. The North China Plain (NCP) is one of the most industrialized and polluted regions in China. To obtain a holistic understanding of the nitrate pollution and its formation mechanisms over the NCP region, intensive field observations were conducted at three sites during summertime in 2014–2015. The measurement sites include an urban site in downtown Jinan – the capital city of Shandong Province –, a rural site downwind of Jinan city, and a remote mountain site at Mt. Tai (1534 m a.s.l.). Elevated nitrate concentrations were observed at all three sites despite distinct temporal and spatial variations. Using historical observations, the nitrate ∕ PM2.5 and nitrate ∕ sulfate ratios have statistically significantly increased in Jinan (2005–2015) and at Mt. Tai (from 2007 to 2014), indicating the worsening situation of regional nitrate pollution. A multiphase chemical box model (RACM–CAPRAM) was deployed and constrained by observations to elucidate the nitrate formation mechanisms. The principal formation route is the partitioning of gaseous HNO3 to the aerosol phase during the day, whilst the nocturnal nitrate formation is dominated by the heterogeneous hydrolysis of N2O5. The daytime nitrate production in the NCP region is mainly limited by the availability of NO2 and to a lesser extent by O3 and NH3. In comparison, the nighttime formation is controlled by both NO2 and O3. The presence of NH3 contributes to the formation of nitrate aerosol during the day, while there is slightly decreasing nitrate formation at night. Our analyses suggest that controlling NOx and O3 is an efficient way, at the moment, to mitigate nitrate pollution in the NCP region, where NH3 is usually in excess in summer. This study provides observational evidence of a rising trend of nitrate aerosol as well as scientific support for formulating effective control strategies for regional haze in China.


2021 ◽  
Vol 21 (9) ◽  
pp. 7409-7427
Author(s):  
Jiangchuan Tao ◽  
Ye Kuang ◽  
Nan Ma ◽  
Juan Hong ◽  
Yele Sun ◽  
...  

Abstract. Secondary aerosols (SAs, including secondary organic and inorganic aerosols, SOAs and SIAs) are predominant components of aerosol particles in the North China Plain (NCP), and their formation has significant impacts on the evolution of particle size distribution (PNSD) and hygroscopicity. Previous studies have shown that distinct SA formation mechanisms can dominate under different relative humidity (RH). This would lead to different influences of SA formation on the aerosol hygroscopicity and PNSD under different RH conditions. Based on the measurements of size-resolved particle activation ratio (SPAR), hygroscopicity distribution (GF-PDF), PM2.5 chemical composition, PNSD, meteorology and gaseous pollutants in a recent field campaign, McFAN (Multiphase chemistry experiment in Fogs and Aerosols in the North China Plain), conducted during the autumn–winter transition period in 2018 at a polluted rural site in the NCP, the influences of SA formation on cloud condensation nuclei (CCN) activity and CCN number concentration (NCCN) calculation under different RH conditions were studied. Results suggest that during daytime, SA formation could lead to a significant increase in NCCN and a strong diurnal variation in SPAR at supersaturations lower than 0.07 %. During periods with daytime minimum RH exceeding 50 % (high RH conditions), SA formation significantly contributed to the particle mass and size changes in a broad size range of 150 to 1000 nm, leading to NCCN (0.05 %) increases within the size range of 200 to 500 nm and mass concentration growth mainly for particles larger than 300 nm. During periods with daytime minimum RH below 30 % (low RH conditions), SA formation mainly contributed to the particle mass and size and NCCN changes for particles smaller than 300 nm. As a result, under the same amount of mass increase induced by SA formation, the increase of NCCN (0.05 %) was stronger under low RH conditions and weaker under high RH conditions. Moreover, the diurnal variations of the SPAR parameter (inferred from CCN measurements) due to SA formation varied with RH conditions, which was one of the largest uncertainties within NCCN predictions. After considering the SPAR parameter (estimated through the number fraction of hygroscopic particles or mass fraction of SA), the relative deviation of NCCN (0.05 %) predictions was reduced to within 30 %. This study highlights the impact of SA formation on CCN activity and NCCN calculation and provides guidance for future improvements of CCN predictions in chemical-transport models and climate models.


2018 ◽  
Author(s):  
Liang Wen ◽  
Likun Xue ◽  
Xinfeng Wang ◽  
Caihong Xu ◽  
Tianshu Chen ◽  
...  

Abstract. Nitrate aerosol composes a significant fraction of fine particles and plays a key role in regional air quality and climate. To obtain a holistic understanding of the nitrate pollution and its formation mechanisms over the North China Plain (NCP) – the most industrialized and polluted region in northern China, intensive field observations were conducted at three sites during summertime in 2014–2015. The measurement sites include the downtown and downwind of Ji'nan, the capital city of Shandong Province, as well as the peak of NCP – Mt. Tai (1534 m a.s.l.), and hence cover representative urban, rural and remote areas of the region. Elevated nitrate concentrations were observed at all three sites despite distinct temporal and spatial variations. The nitrate / PM2.5 and nitrate / sulfate ratios have significantly increased in Ji'nan (2005–2015) and at Mt. Tai (from 2007 to 2014), indicating the worsening situation of regional nitrate pollution. A multi-phase chemical box model (RACM/CAPRAM) was deployed and constrained by observations to elucidate the nitrate formation mechanisms. The principal formation route is the partitioning of gaseous HNO3 to aerosol phase at daytime, whilst the nocturnal nitrate formation is dominated by the heterogeneous hydrolysis of N2O5. The daytime nitrate production in the NCP region is mainly limited by the availability of NO2 and to a lesser extent O3 and NH3, and the nighttime formation is controlled by both NO2 and O3. NH3 prompts significantly the nitrate formation at daytime but plays a slightly negative role in the nighttime. Our analyses suggest that controlling NOx and O3 is an efficient way at the moment to mitigate nitrate pollution in the NCP region, where NH3 is usually in excess in summer. This study provides observational evidence of rising trend of nitrate aerosol as well as scientific support for formulating effective control strategies for regional haze in China.


2021 ◽  
Author(s):  
Jingnan Shi ◽  
Juan Hong ◽  
Nan Ma ◽  
Qingwei Luo ◽  
Hanbing Xu ◽  
...  

<p>Simultaneous measurements of aerosol hygroscopicity and chemical composition were performed at a suburban site in the North China Plain in winter 2018 using a self-assembled hygroscopic tandem differential mobility analyzer (H-TDMA) and a capture-vaporizer time-of-flight aerosol chemical speciation monitor (CV-ToF-ACSM), respectively. During the experimental period, aerosol particles usually show an external mixture in terms of hygroscopicity, with a less hygroscopic particles mode (LH) and a more hygroscopic mode (MH). The average ensemble mean hygroscopicity parameter (κ<sub>mean</sub>) are 0.16, 0.18, 0.16, and 0.15 for 60, 100, 150, and 200 nm particles, respectively. Two episodes with different RH/T conditions and secondary aerosol formations are distinguished. Higher aerosol hygroscopicity is observed for all measured sizes in the high RH episode (HRH) than in the low RH episode (LRH). In LRH, κ decreases as the particle size increases, which may be explained by the large contribution of non- or less-hygroscopic primary compounds in large particles due to the enhanced domestic heating emissions at low temperature. The number fraction of LH mode at 200 nm even exceeds 50%. Closure analysis is carried out between the HTDMA-measured κ and the ACSM-derived hygroscopicity using different approximations for the hygroscopic parameters of organic compounds (κ<sub>org</sub>). The results indicate that κ<sub>org</sub> is less sensitive towards the variation of its oxidation level under HRH conditions but has a stronger O: C-dependency under LRH conditions. The difference in the chemical composition and their corresponding physical properties under different RH/T conditions reflects potentially different formation mechanisms of secondary organic aerosols at those two distinct episodes.</p>


2019 ◽  
Vol 19 (20) ◽  
pp. 12857-12874 ◽  
Author(s):  
Renmin Yuan ◽  
Xiaoye Zhang ◽  
Hao Liu ◽  
Yu Gui ◽  
Bohao Shao ◽  
...  

Abstract. Due to excessive anthropogenic emissions, heavy aerosol pollution episodes (HPEs) often occur during winter in the Beijing–Tianjin–Hebei (BTH) area of the North China Plain. Extensive observational studies have been carried out to understand the causes of HPEs; however, few measurements of vertical aerosol fluxes exist, despite them being the key to understanding vertical aerosol mixing, specifically during weak turbulence stages in HPEs. In the winter of 2016 and the spring of 2017 aerosol vertical mass fluxes were measured by combining large aperture scintillometer (LAS) observations, surface PM2.5 and PM10 mass concentrations, and meteorological observations, including temperature, relative humidity (RH), and visibility, at a rural site in Gucheng (GC), Hebei Province, and an urban site at the Chinese Academy of Meteorological Sciences (CAMS) in Beijing located 100 km to the northeast. These are based on the light propagation theory and surface-layer similarity theory. The near-ground aerosol mass flux was generally lower in winter than in spring and weaker in rural GC than in urban Beijing. This finding provides direct observational evidence for a weakened turbulence intensity and low vertical aerosol fluxes in winter and polluted areas such as GC. The HPEs included a transport stage (TS), an accumulative stage (AS), and a removal stage (RS). During the HPEs from 25 to 31 January 2017, in Beijing, the mean mass flux decreased by 51 % from 0.0049 mg m−2 s−1 in RSs to 0.0024 mg m−2 s−1 in the TSs. During the ASs, the mean mass flux decreased further to 0.00087 mg m−2 s−1, accounting for approximately one-third of the flux in the TSs. A similar reduction from the TSs to ASs was observed in the HPE from 16 to 22 December 2016 in GC. It can be seen that from the TS to the AS, the aerosol vertical turbulent flux decreased, but the aerosol particle concentration within the surface layer increased, and it is inferred that in addition to the contribution of regional transport from upwind areas during the TS, suppression of vertical turbulence mixing confining aerosols to a shallow boundary layer increased accumulation.


2008 ◽  
Vol 8 (21) ◽  
pp. 6355-6363 ◽  
Author(s):  
Y. Wang ◽  
M. B. McElroy ◽  
J. W. Munger ◽  
J. Hao ◽  
H. Ma ◽  
...  

Abstract. Large intra-season differences in mixing ratios of CO and O3 were detected at Miyun, a rural site north of Beijing, in summer 2006. Despite an increase in mean daytime mixing ratio of CO from 500 ppbv in June to 700 ppbv in July, mean daytime O3 dropped from 67 ppbv in June to 50 ppbv in July and August. The observed changes in CO and O3 are attributed to the influence of the summer monsoonal circulation that develops over the North China Plain in July. Photochemical production of O3 is reduced as a consequence of increased cloudiness during July and August, as indicated by the strong negative correlation observed between O3 and satellite observations of cloud optical depth, with cloudiness having little effect on CO. The analysis suggests a strategy for emission controls that could be implemented in an economically efficient manner to minimize the frequency of high levels of O3 during summer in Beijing.


2016 ◽  
Vol 16 (17) ◽  
pp. 10985-11000 ◽  
Author(s):  
Yin Wang ◽  
Zhongming Chen ◽  
Qinqin Wu ◽  
Hao Liang ◽  
Liubin Huang ◽  
...  

Abstract. Measurements of atmospheric peroxides were made during Wangdu Campaign 2014 at Wangdu, a rural site in the North China Plain (NCP) in summer 2014. The predominant peroxides were detected to be hydrogen peroxide (H2O2), methyl hydroperoxide (MHP) and peroxyacetic acid (PAA). The observed H2O2 reached up to 11.3 ppbv, which was the highest value compared with previous observations in China at summer time. A box model simulation based on the Master Chemical Mechanism and constrained by the simultaneous observations of physical parameters and chemical species was performed to explore the chemical budget of atmospheric peroxides. Photochemical oxidation of alkenes was found to be the major secondary formation pathway of atmospheric peroxides, while contributions from alkanes and aromatics were of minor importance. The comparison of modeled and measured peroxide concentrations revealed an underestimation during biomass burning events and an overestimation on haze days, which were ascribed to the direct production of peroxides from biomass burning and the heterogeneous uptake of peroxides by aerosols, respectively. The strengths of the primary emissions from biomass burning were on the same order of the known secondary production rates of atmospheric peroxides during the biomass burning events. The heterogeneous process on aerosol particles was suggested to be the predominant sink for atmospheric peroxides. The atmospheric lifetime of peroxides on haze days in summer in the NCP was about 2–3 h, which is in good agreement with the laboratory studies. Further comprehensive investigations are necessary to better understand the impact of biomass burning and heterogeneous uptake on the concentration of peroxides in the atmosphere.


Sign in / Sign up

Export Citation Format

Share Document