scholarly journals Drivers for spatial, temporal and long-term trends in atmospheric ammonia and ammonium in the UK

Author(s):  
Yuk S. Tang ◽  
Christine F. Braban ◽  
Ulrike Dragosits ◽  
Anthony J. Dore ◽  
Ivan Simmons ◽  
...  

Abstract. A unique long-term dataset from the UK National Ammonia Monitoring Network (NAMN) is used here to assess spatial, seasonal and long-term variability in atmospheric ammonia (NH3: 1998–2014) and particulate ammonium (NH4+: 1999–2014) across the UK. Extensive spatial heterogeneity in NH3 concentrations is observed, with lowest annual mean concentrations at remote sites (

2018 ◽  
Vol 18 (2) ◽  
pp. 705-733 ◽  
Author(s):  
Yuk S. Tang ◽  
Christine F. Braban ◽  
Ulrike Dragosits ◽  
Anthony J. Dore ◽  
Ivan Simmons ◽  
...  

Abstract. A unique long-term dataset from the UK National Ammonia Monitoring Network (NAMN) is used here to assess spatial, seasonal and long-term variability in atmospheric ammonia (NH3: 1998–2014) and particulate ammonium (NH4+: 1999–2014) across the UK. Extensive spatial heterogeneity in NH3 concentrations is observed, with lowest annual mean concentrations at remote sites (< 0.2 µg m−3) and highest in the areas with intensive agriculture (up to 22 µg m−3), while NH4+ concentrations show less spatial variability (e.g. range of 0.14 to 1.8 µg m−3 annual mean in 2005). Temporally, NH3 concentrations are influenced by environmental conditions and local emission sources. In particular, peak NH3 concentrations are observed in summer at background sites (defined by 5 km grid average NH3 emissions < 1 kg N ha−1 yr−1) and in areas dominated by sheep farming, driven by increased volatilization of NH3 in warmer summer temperatures. In areas where cattle, pig and poultry farming is dominant, the largest NH3 concentrations are in spring and autumn, matching periods of manure application to fields. By contrast, peak concentrations of NH4+ aerosol occur in spring, associated with long-range transboundary sources. An estimated decrease in NH3 emissions by 16 % between 1998 and 2014 was reported by the UK National Atmospheric Emissions Inventory. Annually averaged NH3 data from NAMN sites operational over the same period (n =  59) show an indicative downward trend, although the reduction in NH3 concentrations is smaller and non-significant: Mann–Kendall (MK), −6.3 %; linear regression (LR), −3.1 %. In areas dominated by pig and poultry farming, a significant reduction in NH3 concentrations between 1998 and 2014 (MK: −22 %; LR: −21 %, annually averaged NH3) is consistent with, but not as large as the decrease in estimated NH3 emissions from this sector over the same period (−39 %). By contrast, in cattle-dominated areas there is a slight upward trend (non-significant) in NH3 concentrations (MK: +12 %; LR: +3.6 %, annually averaged NH3), despite the estimated decline in NH3 emissions from this sector since 1998 (−11 %). At background and sheep-dominated sites, NH3 concentrations increased over the monitoring period. These increases (non-significant) at background (MK: +17 %; LR: +13 %, annually averaged data) and sheep-dominated sites (MK: +15 %; LR: +19 %, annually averaged data) would be consistent with the concomitant reduction in SO2 emissions over the same period, leading to a longer atmospheric lifetime of NH3, thereby increasing NH3 concentrations in remote areas. The observations for NH3 concentrations not decreasing as fast as estimated emission trends are consistent with a larger downward trend in annual particulate NH4+ concentrations (1999–2014: MK: −47 %; LR: −49 %, p < 0.01, n =  23), associated with a lower formation of particulate NH4+ in the atmosphere from gas phase NH3.


2017 ◽  
Author(s):  
Yuk S. Tang ◽  
Christine F. Braban ◽  
Ulrike Dragosits ◽  
Anthony J. Dore ◽  
Ivan Simmons ◽  
...  

Author(s):  
Anand Menon ◽  
Luigi Scazzieri

This chapter examines the history of the United Kingdom’s relationship with the European integration process. The chapter dissects the long-term trends in public opinion and the more contingent, short-term factors that led to the referendum vote to leave the European Union. The UK was a late joiner and therefore unable to shape the early institutional development of the EEC. British political parties and public opinion were always ambiguous about membership and increasingly Eurosceptic from the early 1990s. Yet the UK had a significant impact on the EU’s development, in the development of the single market programme and eastward enlargement. If Brexit goes through, Britain will nevertheless maintain relations with the EU in all policy areas from agriculture to energy and foreign policy. Europeanization will remain a useful theoretical tool to analyse EU–UK relations even if the UK leaves the Union.


2019 ◽  
Vol 116 ◽  
pp. 00027
Author(s):  
Szymon Hoffman

The assessment of changes in air pollution quality for 4 selected sites in Southern and Central Poland was presented in this paper. The evaluation was based on the sets of long-term data, recorded by the state air monitoring network. Concentrations of O3, PM10, SO2, NOx, and CO, were considered. The basis for the calculations were 12-year time series of hourly concentrations. Using the hourly data, the monthly averages were calculated to illustrate seasonal changes of pollutant concentrations. Linear trends were adjusted to the concentration courses with the least squares method. Long-time trends were calculated for each pollutant separately. Based on the analysis of the trend lines slopes, risks those may arise in the future were identified.


2020 ◽  
Vol 748 ◽  
pp. 141106
Author(s):  
Hui Fu ◽  
Guixiang Yuan ◽  
Korhan Özkan ◽  
Liselotte Sander Johansson ◽  
Martin Søndergaard ◽  
...  

2016 ◽  
Vol 16 (17) ◽  
pp. 11465-11475 ◽  
Author(s):  
Xiaohong Yao ◽  
Leiming Zhang

Abstract. Interannual variabilities in atmospheric ammonia (NH3) during the most recent 7–11 years were investigated at 14 sites across North America using the monitored data obtained from NAPS, CAPMoN and AMoN networks. The long-term average of atmospheric NH3 ranged from 0.8 to 2.6 ppb, depending on location, at four urban and two rural/agricultural sites in Canada. The annual average at these sites did not show any deceasing trend with largely decreasing anthropogenic NH3 emission. An increasing trend was actually identified from 2003 to 2014 at the downtown Toronto site using either the Mann–Kendall or the ensemble empirical mode decomposition method, but “no” or “stable” trends were identified at other sites. The ∼ 20 % increase during the 11-year period at the site was likely caused by changes in NH4+–NH3 partitioning and/or air–surface exchange process as a result of the decreased sulfur emission and increased ambient temperature. The long-term average from 2008 to 2015 was 1.6–4.9 ppb and 0.3–0.5 ppb at four rural/agricultural and at four remote US sites, respectively. A stable trend in NH3 mixing ratio was identified at one rural/agricultural site while increasing trends were identified at three rural/agricultural (0.6–2.6 ppb, 20–50 % increase from 2008 to 2015) and four remote sites (0.3–0.5 ppb, 100–200 % increase from 2008 to 2015). Increased ambient temperature was identified to be a cause for the increasing trends in NH3 mixing ratio at four out of the seven US sites, but what caused the increasing trends at other US sites needs further investigation.


Sign in / Sign up

Export Citation Format

Share Document