scholarly journals Supplementary material to "Measurement Report: Optical properties and sources of water-soluble brown carbon in Tianjin, North China: insights from organic molecular compositions"

Author(s):  
Junjun Deng ◽  
Hao Ma ◽  
Xinfeng Wang ◽  
Shujun Zhong ◽  
Zhimin Zhang ◽  
...  
2022 ◽  
Author(s):  
Junjun Deng ◽  
Hao Ma ◽  
Xinfeng Wang ◽  
Shujun Zhong ◽  
Zhimin Zhang ◽  
...  

Abstract. Brown carbon (BrC) aerosols exert vital impacts on climate change and atmospheric photochemistry due to their light absorption in the wavelength range from near-ultraviolet (UV) to visible light. However, the optical properties and formation mechanisms of ambient BrC remain poorly understood, limiting the estimation of their radiative forcing. In the present study, fine aerosols (PM2.5) were collected during 2016–2017 on a day/night basis over urban Tianjin, a megacity in North China, to obtain seasonal and diurnal patterns of atmospheric water-soluble BrC. There were obvious seasonal but no evident diurnal variations in light absorption properties of BrC. In winter, BrC showed much stronger light absorbing ability since mass absorption efficiency at 365 nm (MAE365) (1.54 ± 0.33 m2 g−1), which was 1.8 times larger than that (0.84 ± 0.22 m2 g−1) in summer. Direct radiative effects by BrC absorption relative to black carbon in the UV range were 54.3 ± 16.9 % and 44.6 ± 13.9 %, respectively. In addition, five fluorescent components in BrC, including three humic-like fluorophores and two protein-like fluorophores were identified with excitation-emission matrix fluorescence spectrometry and parallel factor (PARAFAC) analysis. The lowly-oxygenated components contributed more to winter and nighttime samples, while more-oxygenated components increased in summer and daytime samples. The higher humification index (HIX) together with lower biological index (BIX) and fluorescence index (FI) suggest that the chemical compositions of BrC were associated with a high aromaticity degree in summer and daytime due to photobleaching. Fluorescent properties indicate that wintertime BrC were predominantly affected by primary emissions and fresh secondary organic aerosol (SOA), while summer ones were more influenced by aging processes. Results of source apportionments using organic molecular compositions of the same set of aerosols reveal that fossil fuel combustion and aging processes, primary bioaerosol emission, biomass burning, and biogenic and anthropogenic SOA formation were the main sources of BrC. Biomass burning contributed much larger to BrC in winter and at nighttime, while biogenic SOA contributed more in summer and at daytime. Especially, our study highlights that primary bioaerosol emission is an important source of BrC in urban Tianjin in summer.


2019 ◽  
Vol 53 (21) ◽  
pp. 12389-12397 ◽  
Author(s):  
Qiyuan Wang ◽  
Jianhuai Ye ◽  
Yichen Wang ◽  
Ting Zhang ◽  
Weikang Ran ◽  
...  

2019 ◽  
Vol 19 (17) ◽  
pp. 11213-11233 ◽  
Author(s):  
Xiaoyan Liu ◽  
Yan-Lin Zhang ◽  
Yiran Peng ◽  
Lulu Xu ◽  
Chunmao Zhu ◽  
...  

Abstract. Biomass burning can significantly impact the chemical and optical properties of carbonaceous aerosols. Here, the biomass burning impacts were studied during wintertime in a megacity of Nanjing, eastern China. The high abundance of biomass burning tracers such as levoglucosan (lev), mannosan (man), galactosan (gal) and non-sea-salt potassium (nss-K+) was found during the studied period with the concentration ranges of 22.4–1476 ng m−3, 2.1–56.2 ng m−3, 1.4–32.2 ng m−3 and 0.2–3.8 µg m−3, respectively. The significant contribution of biomass burning to water-soluble organic carbon (WSOC; 22.3±9.9 %) and organic carbon (OC; 20.9±9.3 %) was observed in this study. Backward air mass origin analysis, potential emission sensitivity of elemental carbon (EC) and MODIS fire spot information indicated that the elevations of the carbonaceous aerosols were due to the transported biomass-burning aerosols from southeastern China. The characteristic mass ratio maps of lev∕man and lev∕nss-K+ suggested that the biomass fuels were mainly crop residuals. Furthermore, the strong correlation (p < 0.01) between biomass burning tracers (such as lev) and light absorption coefficient (babs) for water-soluble brown carbon (BrC) revealed that biomass burning emissions played a significant role in the light-absorption properties of carbonaceous aerosols. The solar energy absorption due to water-soluble brown carbon and EC was estimated by a calculation based on measured light-absorbing parameters and a simulation based on a radiative transfer model (RRTMG_SW). The solar energy absorption of water-soluble BrC in short wavelengths (300–400 nm) was 0.8±0.4 (0.2–2.3) W m−2 (figures in parentheses represent the variation range of each parameter) from the calculation and 1.2±0.5 (0.3–1.9) W m−2 from the RRTMG_SW model. The absorption capacity of water-soluble BrC accounted for about 20 %–30 % of the total absorption of EC aerosols. The solar energy absorption of water-soluble BrC due to biomass burning was estimated as 0.2±0.1 (0.0–0.9) W m−2, considering the biomass burning contribution to carbonaceous aerosols. Potential source contribution function model simulations showed that the solar energy absorption induced by water-soluble BrC and EC aerosols was mostly due to the regionally transported carbonaceous aerosols from source regions such as southeastern China. Our results illustrate the importance of the absorbing water-soluble brown carbon aerosols in trapping additional solar energy in the low-level atmosphere, heating the surface and inhibiting the energy from escaping the atmosphere.


2021 ◽  
Author(s):  
Ziyong Guo ◽  
Yuxiang Yang ◽  
Xiaodong Hu ◽  
Xiaocong Peng ◽  
Yuzhen Fu ◽  
...  

Abstract. Atmospheric brown carbon (BrC) makes a substantial contribution to aerosol light-absorbing and thus the global radiative forcing. Although BrC may change the lifetime of the cloud and ultimately affect precipitation, little is known regarding the optical properties and formation of BrC in the cloud. In the present study, the light-absorption properties of cloud droplet residual (cloud RES) were measured by coupled a ground-based counterflow virtual impactor (GCVI) and an Aethalometer (AE-33), in addition to the cloud interstitial (cloud INT) and ambient (cloud-free) particles by PM2.5 inlet-AE-33, at Mt. Tianjing (1690 m a.s.l.), a remote mountain site in southern China, from November to December 2020. Meanwhile, the light-absorption and fluorescence properties of water-soluble organic carbon (WSOC) in the collected cloud water and PM2.5 samples were also obtained, associated with the concentration of water-soluble ions. The mean light-absorption coefficient (Abs370) of the cloud RES, cloud INT, and cloud-free particles were 0.25 ± 0.15, 1.16 ± 1.14, and 1.47 ± 1.23 Mm−1, respectively. The Abs365 of WSOC was 0.11 ± 0.08 Mm−1 in cloud water and 0.40 ± 0.31 Mm−1 in PM2.5, and the corresponding mass absorption efficiency (MAE365) was 0.17 ± 0.07 and 0.31 ± 0.21 m2·g−1, respectively. A comparison of the light-absorption coefficient between BrC in the cloud RES/cloud INT and WSOC in cloud water/PM2.5 indicates a considerable contribution (48–75 %) of water-insoluble BrC to total BrC light-absorption. Secondary BrC estimated by minimum R squared (MRS) method dominated the total BrC in cloud RES (67–85 %), rather than in the cloud-free (11–16 %) and cloud INT (9–23 %) particles. It may indicate the formation of secondary BrC during cloud processing. Supporting evidence includes the enhanced WSOC and dominant contribution of secondary formation/biomass burning factor (> 80 %) to Abs365 in cloud water provided by Positive Matrix Factorization (PMF) analysis. In addition, we showed that the light-absorption of BrC in cloud water was closely related to humic-like substances and tyrosine/proteins-like substances (r > 0.63, p < 0.01), whereas only humic-like substances for PM2.5, as identified by excitation-emission matrix fluorescence spectroscopy.


2020 ◽  
Author(s):  
Archita Rana ◽  
Supriya Dey ◽  
Sayantan Sarkar

&lt;p&gt;Black and brown carbon (BC and BrC) are potent climate forcing agents with pronounced effects on global climate and tropospheric chemistry. Given the large heterogeneities in BC emission inventories from India and the paucity of studies on BrC characteristics, field-based measurements of BC and BrC sources and optical properties are essential to understand their impacts on regional climate. To address this issue, we report the first ground-based measurements of BC and BrC from a rural location in the highly polluted eastern Indo-Gangetic Plain (IGP) during May-November 2018 encompassing the photochemistry-dominated summer (May-June) and regional biomass burning (BB)-dominated post-monsoon (October-November) periods. A 7-wavelength Aethalometer was used for time-resolved measurements of BC mass and was supplemented by UV-Vis and fluorescence measurements of time-integrated (24 h) aqueous and organic BrC fractions, and measurements of OC, EC, WSOC, and ionic species.&lt;br&gt;The daily averaged BC increased 4 times during the BB regime (12.3 &amp;#177; 3.9 &amp;#956;g m&lt;sup&gt;-3&lt;/sup&gt;) as compared to summer (4.2 &amp;#177; 0.8 &amp;#956;g m&lt;sup&gt;-3&lt;/sup&gt;), while aqueous and organic BrC fractions demonstrated light absorption (babs_365) enhancements of 3-5 times during BB. For aqueous BrC, the averaged AE of 5.9-6.2 and a prominent fluorescence peak at ~420 nm suggested the presence of humic-like substances (HULIS), potentially from secondary photochemical formation during summer and primary emission during BB periods. Fluorescence and UV-Vis spectra also indicated the presence of nitroaromatic compounds, presumably from OH oxidation in summer and nighttime NO3- oxidation in the presence of enhanced NOx and precursor emission during BB. The latter was supported by the strong association between water-soluble organic carbon (WSOC; a proxy for aqueous BrC) and aerosol NO&lt;sub&gt;3&lt;/sub&gt;&lt;sup&gt;-&lt;/sup&gt; (r=0.70, p&lt;0.05). During BB, the fraction of water-insoluble (i.e., organic) BrC increased from 41% at 330 nm to 59 % at 550 nm while during the photochemistry-dominated summer period, the water-insoluble BrC fraction decreased from 73% at 400 nm to 41% at 530 nm, possibly due to photobleaching in the presence of OH. The BB-related BrC aerosol was also characterized by higher aromaticity and increased molecular weights of organic components as evidenced by mass absorption efficiency (MAE) ratios (MAE&lt;sub&gt;250&lt;/sub&gt;/MAE&lt;sub&gt;365&lt;/sub&gt;). Overall, this study established that BrC is a significant component of light-absorbing aerosol in the eastern IGP and that BrC optical properties may vary significantly in this region depending on the relative dominance of aerosol emissions and atmospheric processes.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document