scholarly journals Investigation and amelioration of long-term instrumental drifts in water vapor and nitrous oxide measurements from the Aura Microwave Limb Sounder (MLS) and their implications for studies of variability and trends

2021 ◽  
Vol 21 (20) ◽  
pp. 15409-15430
Author(s):  
Nathaniel J. Livesey ◽  
William G. Read ◽  
Lucien Froidevaux ◽  
Alyn Lambert ◽  
Michelle L. Santee ◽  
...  

Abstract. The Microwave Limb Sounder (MLS), launched on NASA's Aura spacecraft in 2004, measures vertical profiles of the abundances of key atmospheric species from the upper troposphere to the mesosphere with daily near-global coverage. We review the first 15 years of the record of H2O and N2O measurements from the MLS 190 GHz subsystem (along with other 190 GHz information), with a focus on their long-term stability, largely based on comparisons with measurements from other sensors. These comparisons generally show signs of an increasing drift in the MLS “version 4” (v4) H2O record starting around 2010. Specifically, comparisons with v4.1 measurements from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) indicate a ∼ 2 %–3 % per decade drift over much of the stratosphere, increasing to as much as ∼ 7 % per decade around 46 hPa. Larger drifts, of around 7 %–11 % per decade, are seen in comparisons to balloon-borne frost point hygrometer measurements in the lower stratosphere. Microphysical calculations considering the formation of polar stratospheric clouds in the Antarctic winter stratosphere corroborate a drift in MLS v4 water vapor measurements in that region and season. In contrast, comparisons with the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on NASA's Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) mission, and with ground-based Water Vapor Millimeter-wave Spectrometer (WVMS) instruments, do not show statistically significant drifts. However, the uncertainty in these comparisons is large enough to encompass most of the drifts identified in other comparisons. In parallel, the MLS v4 N2O product is shown to be generally decreasing over the same period (when an increase in stratospheric N2O is expected, reflecting a secular growth in emissions), with a more pronounced drift in the lower stratosphere than that found for H2O. Comparisons to ACE-FTS and to MLS N2O observations in a different spectral region, with the latter available from 2004 to 2013, indicate an altitude-dependent drift, growing from 5 % per decade or less in the mid-stratosphere to as much as 15 % per decade in the lower stratosphere. Detailed investigations of the behavior of the MLS 190 GHz subsystem reveal a drift in its “sideband fraction” (the relative sensitivity of the 190 GHz receiver to the two different parts of the microwave spectrum that it observes). Our studies indicate that sideband fraction drift accounts for much of the observed changes in the MLS H2O product and some portion of the changes seen in N2O. The 190 GHz sideband fraction drift has been corrected in the new “version 5” (v5) MLS algorithms, which have now been used to reprocess the entire MLS record. As a result of this correction, the MLS v5 H2O record shows no statistically significant drifts compared to ACE-FTS. However, statistically significant drifts remain between MLS v5 and frost point measurements, although they are reduced. Drifts in v5 N2O are about half the size of those in v4 but remain statistically significant. Scientists are advised to use MLS v5 data in all future studies. Quantification of interregional and seasonal to annual changes in MLS H2O and N2O will not be affected by the drift. However, caution is advised in studies using the MLS record to examine long-term (multiyear) variability and trends in either of these species, especially N2O; such studies should only be undertaken in consultation with the MLS team. Importantly, this drift does not affect any of the MLS observations made in other spectral regions such as O3, HCl, CO, ClO, or temperature.

2021 ◽  
Author(s):  
Nathaniel J. Livesey ◽  
William G. Read ◽  
Lucien Froidevaux ◽  
Alyn Lambert ◽  
Michelle L. Santee ◽  
...  

Abstract. The Microwave Limb Sounder (MLS), launched on NASA's Aura spacecraft in 2004, measures vertical profiles of the abundances of key atmospheric species from the upper troposphere to the mesosphere with daily near-global coverage. We review the first 15 years of the record of H2O and N2O measurements from the MLS 190-GHz subsystem (along with other 190-GHz information), with a focus on their long-term stability, largely based on comparisons with measurements from other sensors. These comparisons generally show signs of an increasing drift in the MLS version 4 (v4) H2O record starting around 2010. Specifically, comparisons with v4.1 measurements from the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS) indicate a ~2–3 %/decade drift over much of the stratosphere, increasing to as much as ~7 %/decade around 46 hPa. Larger drifts, of around 7–11 %/decade, are seen in comparisons to balloon-borne frost point hygrometer measurements in the lower stratosphere. In contrast, the MLS v4 N2O product is shown to be generally decreasing over the same period (when an increase in stratospheric N2O is expected, reflecting a secular growth in emissions), with a more pronounced drift in the lower stratosphere than that found for H2O. Detailed investigations of the behavior of the MLS 190-GHz subsystem reveal a drift in its sideband fraction (the relative sensitivity of the 190-GHz receiver to the two different parts of the microwave spectrum it observes). Our studies indicate that sideband fraction drift accounts for much of the observed changes in the MLS H2O product and some portion of the changes seen in N2O. The 190-GHz sideband fraction drift has been corrected in the new version 5 MLS algorithms, which have now been used to reprocess the entire MLS record. As a result of this correction, the MLS v5 H2O record shows no statistically significant drifts compared to ACE-FTS. However, statistically significant drifts remain between MLS v5 and frost point measurements, though they are reduced. Drifts in v5 N2O are about half the size of those in v4 but remain statistically significant. Scientists are advised to use MLS v5 data in all future studies. Quantification of inter-regional and seasonal-to-annual changes in MLS H2O and N2O will not be affected by the drift. However, caution is advised in studies using the MLS record to examine long-term (multi-year) variability and trends in either of these species, especially N2O; such studies should only be undertaken in consultation with the MLS team. Importantly, this drift does not affect any of the MLS observations made in other spectral regions such as O3, HCl, CO, ClO, or temperature.


2008 ◽  
Vol 8 (3) ◽  
pp. 505-522 ◽  
Author(s):  
G. L. Manney ◽  
W. H. Daffer ◽  
K. B. Strawbridge ◽  
K. A. Walker ◽  
C. D. Boone ◽  
...  

Abstract. The first three Arctic winters of the ACE mission represented two extremes of winter variability: Stratospheric sudden warmings (SSWs) in 2004 and 2006 were among the strongest, most prolonged on record; 2005 was a record cold winter. Canadian Arctic Atmospheric Chemistry Experiment (ACE) Validation Campaigns were conducted at Eureka (80° N, 86° W) during each of these winters. New satellite measurements from ACE-Fourier Transform Spectrometer (ACE-FTS), Sounding of the Atmosphere using Broadband Emission Radiometry (SABER), and Aura Microwave Limb Sounder (MLS), along with meteorological analyses and Eureka lidar temperatures, are used to detail the meteorology in these winters, to demonstrate its influence on transport, and to provide a context for interpretation of ACE-FTS and validation campaign observations. During the 2004 and 2006 SSWs, the vortex broke down throughout the stratosphere, reformed quickly in the upper stratosphere, and remained weak in the middle and lower stratosphere. The stratopause reformed at very high altitude, near 75 km. ACE measurements covered both vortex and extra-vortex conditions in each winter, except in late-February through mid-March 2004 and 2006, when the strong, pole-centered vortex that reformed after the SSWs resulted in ACE sampling only inside the vortex in the middle through upper stratosphere. The 2004 and 2006 Eureka campaigns were during the recovery from the SSWs, with the redeveloping vortex over Eureka. 2005 was the coldest winter on record in the lower stratosphere, but with an early final warming in mid-March. The vortex was over Eureka at the start of the 2005 campaign, but moved away as it broke up. Disparate temperature profile structure and vortex evolution resulted in much lower (higher) temperatures in the upper (lower) stratosphere in 2004 and 2006 than in 2005. Satellite temperatures agree well with lidar data up to 50–60 km, and ACE-FTS, MLS and SABER show good agreement in high-latitude temperatures throughout the winters. Consistent with a strong, cold upper stratospheric vortex and enhanced radiative cooling after the SSWs, MLS and ACE-FTS trace gas measurements show strongly enhanced descent in the upper stratospheric vortex in late January through March 2006 compared to that in 2005.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5347
Author(s):  
Xiaoning Jia ◽  
Joris Roels ◽  
Roel Baets ◽  
Gunther Roelkens

In this paper, we present a fully integrated Non-dispersive Infrared (NDIR) CO2 sensor implemented on a silicon chip. The sensor is based on an integrating cylinder with access waveguides. A mid-IR LED is used as the optical source, and two mid-IR photodiodes are used as detectors. The fully integrated sensor is formed by wafer bonding of two silicon substrates. The fabricated sensor was evaluated by performing a CO2 concentration measurement, showing a limit of detection of ∼750 ppm. The cross-sensitivity of the sensor to water vapor was studied both experimentally and numerically. No notable water interference was observed in the experimental characterizations. Numerical simulations showed that the transmission change induced by water vapor absorption is much smaller than the detection limit of the sensor. A qualitative analysis on the long term stability of the sensor revealed that the long term stability of the sensor is subject to the temperature fluctuations in the laboratory. The use of relatively cheap LED and photodiodes bare chips, together with the wafer-level fabrication process of the sensor provides the potential for a low cost, highly miniaturized NDIR CO2 sensor.


2016 ◽  
Author(s):  
Dale F. Hurst ◽  
William G. Read ◽  
Holger Vömel ◽  
Henry B. Selkirk ◽  
Karen H. Rosenlof ◽  
...  

Abstract. Balloon-borne frost point hygrometers (FPs) and the Aura Microwave Limb Sounder (MLS) provide high-quality vertical profile measurements of water vapor in the upper troposphere and lower stratosphere (UTLS). A previous comparison of stratospheric water vapor measurements by FPs and MLS over three FP sites, Boulder, Colorado (40.0° N), Hilo, Hawaii (19.7° N) and Lauder, New Zealand (45.0° S), from August 2004 through December 2012, demonstrated agreement better than 1 % between 68 and 26 hPa, but also exposed statistically significant biases of 2 to 10 % at 83 and 100 hPa (Hurst et al., 2014). A simple linear regression analysis of the FPH-MLS differences revealed no significant long-term drifts between the two instruments. Here we extend the drift comparison to mid-2015 and add two FP sites, Lindenberg, Germany (52.2° N) and San José, Costa Rica (10.0° N) that employ FPs of different manufacture and calibration for their water vapor soundings. The extended comparison period reveals that stratospheric FP and MLS measurements over 4 of the 5 sites have diverged at rates of 0.03 to 0.07 ppmv yr−1 (0.6 to 1.5 % yr−1) from ~2010 to mid-2015. These rates are similar in magnitude to the 30-year (1980–2010) average growth rate of stratospheric water vapor (~1 % yr−1) measured by FPs over Boulder (Hurst et al., 2011). By mid-2015, the FP-MLS differences at some sites were large enough to exceed the combined accuracy estimates of the FP and MLS measurements.


2012 ◽  
Vol 5 (1) ◽  
pp. 17-36 ◽  
Author(s):  
T. Leblanc ◽  
I. S. McDermid ◽  
T. D. Walsh

Abstract. Recognizing the importance of water vapor in the upper troposphere and lower stratosphere (UTLS) and the scarcity of high-quality, long-term measurements, JPL began the development of a powerful Raman lidar in 2005 to try to meet these needs. This development was endorsed by the Network for the Detection of Atmospheric Composition Change (NDACC) and the validation program for the EOS-Aura satellite. In this paper we review the stages in the instrumental development, data acquisition and analysis, profile retrieval and calibration procedures of the lidar, as well as selected results from three validation campaigns: MOHAVE (Measurements of Humidity in the Atmosphere and Validation Experiments), MOHAVE-II, and MOHAVE 2009. In particular, one critical result from this latest campaign is the very good agreement (well below the reported uncertainties) observed between the lidar and the Cryogenic Frost-Point Hygrometer in the entire lidar range 3–20 km, with a mean bias not exceeding 2% (lidar dry) in the lower troposphere, and 3% (lidar moist) in the UTLS. Ultimately the lidar has demonstrated capability to measure water vapor profiles from ∼1 km above the ground to the lower stratosphere with a precision of 10% or better near 13 km and below, and an estimated accuracy of 5%. Since 2005, nearly 1000 profiles have been routinely measured, and since 2009, the profiles have typically reached 14 km for one-hour integration times and 1.5 km vertical resolution, and can reach 21 km for 6-h integration times using degraded vertical resolutions. These performance figures show that, with our present target of routinely running our lidar two hours per night, 4 nights per week, we can achieve measurements with a precision in the UTLS equivalent to that achieved if launching one CFH per month.


2016 ◽  
Vol 9 (8) ◽  
pp. 3755-3768 ◽  
Author(s):  
Holger Vömel ◽  
Tatjana Naebert ◽  
Ruud Dirksen ◽  
Michael Sommer

Abstract. Long time series of observations of essential climate variables in the troposphere and stratosphere are often impacted by inconsistencies in instrumentation and ambiguities in the interpretation of the data. To reduce these problems of long-term data series, all measurements should include an estimate of their uncertainty and a description of their sources. Here we present an update of the uncertainties for tropospheric and stratospheric water vapor observations using the cryogenic frost point hygrometer (CFH). The largest source of measurement uncertainty is the controller stability, which is discussed here in detail. We describe a method to quantify this uncertainty for each profile based on the measurements. We also show the importance of a manufacturer-independent ground check, which is an essential tool to continuously monitor the uncertainty introduced by instrument variability. A small bias, which has previously been indicated in lower tropospheric measurements, is described here in detail and has been rectified. Under good conditions, the total from all sources of uncertainty of frost point or dew point measurements using the CFH can be better than 0.2 K. Systematic errors, which are most likely to impact long-term climate series, are verified to be less than 0.1 K. The impact of the radiosonde pressure uncertainty on the mixing ratio for properly processed radiosondes is considered small. The mixing ratio uncertainty may be as low as 2 to 3 %. The impact of the ambient temperature uncertainty on relative humidity (RH) is generally larger than that of the frost point uncertainty. The relative RH uncertainty may be as low as 2 % in the lower troposphere and 5 % in the tropical tropopause region.


2015 ◽  
Vol 15 (18) ◽  
pp. 10471-10507 ◽  
Author(s):  
L. Froidevaux ◽  
J. Anderson ◽  
H.-J. Wang ◽  
R. A. Fuller ◽  
M. J. Schwartz ◽  
...  

Abstract. We describe the publicly available data from the Global OZone Chemistry And Related trace gas Data records for the Stratosphere (GOZCARDS) project and provide some results, with a focus on hydrogen chloride (HCl), water vapor (H2O), and ozone (O3). This data set is a global long-term stratospheric Earth system data record, consisting of monthly zonal mean time series starting as early as 1979. The data records are based on high-quality measurements from several NASA satellite instruments and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) on SCISAT. We examine consistency aspects between the various data sets. To merge ozone records, the time series are debiased relative to SAGE II (Stratospheric Aerosol and Gas Experiments) values by calculating average offsets versus SAGE II during measurement overlap periods, whereas for other species the merging derives from an averaging procedure during overlap periods. The GOZCARDS files contain mixing ratios on a common pressure–latitude grid, as well as standard errors and other diagnostics; we also present estimates of systematic uncertainties in the merged products. Monthly mean temperatures for GOZCARDS were also produced, based directly on data from the Modern-Era Retrospective analysis for Research and Applications. The GOZCARDS HCl merged product comes from the Halogen Occultation Experiment (HALOE), ACE-FTS and lower-stratospheric Aura Microwave Limb Sounder (MLS) data. After a rapid rise in upper-stratospheric HCl in the early 1990s, the rate of decrease in this region for 1997–2010 was between 0.4 and 0.7 % yr−1. On 6–8-year timescales, the rate of decrease peaked in 2004–2005 at about 1 % yr−1, and it has since levelled off, at ~ 0.5 % yr−1. With a delay of 6–7 years, these changes roughly follow total surface chlorine, whose behavior versus time arises from inhomogeneous changes in the source gases. Since the late 1990s, HCl decreases in the lower stratosphere have occurred with pronounced latitudinal variability at rates sometimes exceeding 1–2 % yr−1. Recent short-term tendencies of lower-stratospheric and column HCl vary substantially, with increases from 2005 to 2010 for northern midlatitudes and deep tropics, but decreases (increases) after 2011 at northern (southern) midlatitudes. For H2O, the GOZCARDS product covers both stratosphere and mesosphere, and the same instruments as for HCl are used, along with Upper Atmosphere Research Satellite (UARS) MLS stratospheric H2O data (1991–1993). We display seasonal to decadal-type variability in H2O from 22 years of data. In the upper mesosphere, the anticorrelation between H2O and solar flux is now clearly visible over two full solar cycles. Lower-stratospheric tropical H2O has exhibited two periods of increasing values, followed by fairly sharp drops (the well-documented 2000–2001 decrease and a recent drop in 2011–2013). Tropical decadal variability peaks just above the tropopause. Between 1991 and 2013, both in the tropics and on a near-global basis, H2O has decreased by ~ 5–10 % in the lower stratosphere, but about a 10 % increase is observed in the upper stratosphere and lower mesosphere. However, such tendencies may not represent longer-term trends. For ozone, we used SAGE I, SAGE II, HALOE, UARS and Aura MLS, and ACE-FTS data to produce a merged record from late 1979 onward, using SAGE II as the primary reference. Unlike the 2 to 3 % increase in near-global column ozone after the late 1990s reported by some, GOZCARDS stratospheric column O3 values do not show a recent upturn of more than 0.5 to 1 %; long-term interannual column ozone variations from GOZCARDS are generally in very good agreement with interannual changes in merged total column ozone (Version 8.6) data from SBUV instruments. A brief mention is also made of other currently available, commonly formatted GOZCARDS satellite data records for stratospheric composition, namely those for N2O and HNO3.


2009 ◽  
Vol 2 (4) ◽  
pp. 2055-2085 ◽  
Author(s):  
P. Sturm ◽  
A. Knohl

Abstract. We present a detailed assessment of a commercially available water vapor isotope analyzer (WVIA, Los Gatos Research, Inc.) for simultaneous in-situ measurements of δ2H and δ18O in water vapor. This method, based on off-axis integrated cavity output spectroscopy, is an alternative to the conventional water trap/isotope ratio mass spectrometry (IRMS) techniques. We evaluate the analyzer in terms of precision, memory effects, concentration dependence, temperature sensitivity and long-term stability. A calibration system based on ink jet technology is used to characterize the performance and to calibrate the analyzer. Our results show that the precision at an averaging time of 15 s is 0.16‰ for δ2H and 0.08‰ for δ18O. The isotope ratios are strongly dependent on the water mixing ratio of the air. Taking into account this concentration dependence as well as the temperature sensitivity of the instrument we obtained a long-term stability of the water isotope measurements of 0.38‰ for δ2H and 0.25‰ for δ18O. The accuracy of the WVIA was further assessed by comparative measurements using IRMS and a dew point generator indicating a linear response in isotopic composition and H2O concentrations. The WVIA combined with a calibration system provides accurate high resolution water vapor isotope measurements and opens new possibilities for hydrological and ecological applications.


2015 ◽  
Vol 15 (6) ◽  
pp. 3021-3043 ◽  
Author(s):  
F. Tummon ◽  
B. Hassler ◽  
N. R. P. Harris ◽  
J. Staehelin ◽  
W. Steinbrecht ◽  
...  

Abstract. In the framework of the SI2N (SPARC (Stratosphere-troposphere Processes And their Role in Climate)/IO3C (International Ozone Commission)/IGACO-O3 (Integrated Global Atmospheric Chemistry Observations – Ozone)/NDACC (Network for the Detection of Atmospheric Composition Change)) initiative, several long-term vertically resolved merged ozone data sets produced from satellite measurements have been analysed and compared. This paper presents an overview of the methods, assumptions, and challenges involved in constructing such merged data sets, as well as the first thorough intercomparison of seven new long-term satellite data sets. The analysis focuses on the representation of the annual cycle, interannual variability, and long-term trends for the period 1984–2011, which is common to all data sets. Overall, the best agreement amongst data sets is seen in the mid-latitude lower and middle stratosphere, with larger differences in the equatorial lower stratosphere and the upper stratosphere globally. In most cases, differences in the choice of underlying instrument records that were merged produced larger differences between data sets than the use of different merging techniques. Long-term ozone trends were calculated for the period 1984–2011 using a piecewise linear regression with a change in trend prescribed at the end of 1997. For the 1984–1997 period, trends tend to be most similar between data sets (with largest negative trends ranging from −4 to −8% decade−1 in the mid-latitude upper stratosphere), in large part due to the fact that most data sets are predominantly (or only) based on the SAGE-II record. Trends in the middle and lower stratosphere are much smaller, and, particularly for the lower stratosphere, large uncertainties remain. For the later period (1998–2011), trends vary to a greater extent, ranging from approximately −1 to +5% decade−1 in the upper stratosphere. Again, middle and lower stratospheric trends are smaller and for most data sets not significantly different from zero. Overall, however, there is a clear shift from mostly negative to mostly positive trends between the two periods over much of the profile.


Sign in / Sign up

Export Citation Format

Share Document