scholarly journals Soot PCF: pore condensation and freezing framework for soot aggregates

2021 ◽  
Vol 21 (10) ◽  
pp. 7791-7843
Author(s):  
Claudia Marcolli ◽  
Fabian Mahrt ◽  
Bernd Kärcher

Abstract. Atmospheric ice formation in cirrus clouds is often initiated by aerosol particles that act as ice-nucleating particles. The aerosol–cloud interactions of soot and associated feedbacks remain uncertain, in part because a coherent understanding of the ice nucleation mechanism and activity of soot has not yet emerged. Here, we provide a new framework that predicts ice formation on soot particles via pore condensation and freezing (PCF) that, unlike previous approaches, considers soot particle properties, capturing their vastly different pore properties compared to other aerosol species such as mineral dust. During PCF, water is taken up into pores of the soot aggregates by capillary condensation. At cirrus temperatures, the pore water can freeze homogeneously and subsequently grow into a macroscopic ice crystal. In the soot-PCF framework presented here, the relative humidity conditions required for these steps are derived for different pore types as a function of temperature. The pore types considered here encompass n-membered ring pores that form between n individual spheres within the same layer of primary particles as well as pores in the form of inner cavities that form between two layers of primary particles. We treat soot primary particles as perfect spheres and use the contact angle between soot and water (θsw), the primary particle diameter (Dpp), and the degree of primary particle overlap (overlap coefficient, Cov) to characterize pore properties. We find that three-membered and four-membered ring pores are of the right size for PCF, assuming primary particle sizes typical of atmospheric soot particles. For these pore types, we derive equations that describe the conditions for all three steps of soot PCF, namely capillary condensation, ice nucleation, and ice growth. Since at typical cirrus conditions homogeneous ice nucleation can be considered immediate as soon as the water volume within the pore is large enough to host a critical ice embryo, soot PCF becomes limited by either capillary condensation or ice crystal growth. We use the soot-PCF framework to derive a new equation to parameterize ice formation on soot particles via PCF, based on soot properties that are routinely measured, including the primary particle size, overlap, and the fractal dimension. These properties, along with the number of primary particles making up an aggregate and the contact angle between water and soot, constrain the parameterization. Applying the new parameterization to previously reported laboratory data of ice formation on soot particles provides direct evidence that ice nucleation on soot aggregates takes place via PCF. We conclude that this new framework clarifies the ice formation mechanism on soot particles in cirrus conditions and provides a new perspective to represent ice formation on soot in climate models.

2020 ◽  
Author(s):  
Claudia Marcolli ◽  
Fabian Mahrt ◽  
Bernd Kärcher

Abstract. How ice crystals form in the troposphere strongly affects cirrus cloud properties. Atmospheric ice formation is often initiated by aerosol particles that act as ice nucleating particles. The aerosol-cloud interactions of soot and associated feedbacks remain uncertain, in part because a coherent understanding of the ice nucleation mechanism and activity of soot has not yet emerged. Here, we provide a new framework that predicts ice formation on soot particles via pore condensation and freezing (PCF) that, unlike previous approaches, considers soot particle properties capturing their vastly different pore properties compared to other aerosol species such as mineral dust. During PCF, water is taken up below water saturation into pores on soot aggregates by capillary condensation. At cirrus temperatures, pore water can freeze homogeneously and subsequently grow into a macroscopic ice crystal. In the soot-PCF framework presented here, the relative humidity conditions required for these steps are derived for different pore types as a function of temperature. The pore types considered here evolve from idealized stacking of equally sized primary particles, either in tetrahedral or cubic packing arrangements. Specifically, we encompass n-membered ring pores that form between n individual spheres within the same layer of primary particles as well as pores in the form of inner cavities that form between two layers of primary particles. We treat soot primary particles as perfect spheres and use the contact angle between soot and water (θsw), the primary particle diameter (Dpp) and the degree of primary particle overlap (overlap coefficient, Cov) to characterize soot pore properties. We find that n-membered ring pores are the dominant pore structures for soot-PCF, as they are common features of soot aggregates and have a suitable geometry for both, filling with water and growing ice below water saturation. We focus our analysis on three-membered and four-membered ring pores as they are of the right size for PCF assuming primary particle sizes typical for atmospheric soot particles. For these pore types, we derive equations that describe the conditions for all three steps of soot-PCF, namely capillary condensation, ice nucleation, and ice growth. Since at typical cirrus conditions homogeneous ice nucleation can be considered immediate as soon as the water volume within the pore is large enough to host a critical ice embryo, soot-PCF becomes either limited by capillary condensation or ice crystal growth. For instance, our results show that at typical cirrus temperatures of T = 220 K, three-membered ring pores formed between primary particles with θsw = 60°, Dpp = 20 nm, and Cov = 0.05 are ice growth limited, as the ice requires a relative humidity with respect to ice of RHi = 137 % to grow out of the pore, while a sufficient volume of pore water for ice nucleation has condensed already at RHi = 86 %. Conversely, four-membered ring pores with the same primary particle size and an overlap coefficient of Cov = 0.1 are capillary condensation limited as they require RHi = 129 % to gather enough water for ice nucleation, compared with only 124 % RHi, required for ice growth. We use the soot-PCF framework to derive a new equation to parameterize of ice formation on soot particles via PCF. This equation is based on soot properties that are routinely measured, including the primary particle size and overlap, and the fractal dimension. These properties, along with the number of primary particles making up an aggregate and the contact angle between water and soot, constrain the parameterization. Applying the new parameterization to previously reported laboratory data of ice formation on soot particles provides direct evidence that ice nucleation on soot aggregates takes place via PCF. We conclude that this new framework clarifies the ice formation mechanism on soot particles at cirrus conditions and provides a new perspective to represent ice formation on soot in climate models.


2020 ◽  
Author(s):  
Cuiqi Zhang ◽  
Yue Zhang ◽  
Martin Wolf ◽  
Longfei Chen ◽  
Daniel Cziczo

<p>Deposition ice nucleation (IN) is a heterogeneous pathway by which water vapor deposits directly onto a solid surface and forms ice. Deposition IN happens below water saturation. However, the pore condensation and freezing (PCF) mechanism offers another explanation to ice formation on porous particles at low ice supersaturation. A single black carbon (BC) aggregate consists of several primary particles, forming crevices between primary particles. Whether BC IN happens via deposition or PCF remains uncertain due to the fractal nature of BC particles.</p><p>We estimated aggregate surface area, morphology, and primary particle size distribution directly from scanning electron microscopy (SEM) images of size-selected (200 nm, 300 nm, and 400 nm) commercial BC particles. Correlations between surface area data obtained from SEM image estimation and traditional BET tests were explored. Several shape parameters were chosen to characterize particle morphology. The IN ability of aerosolized BC particles was determined with the Spectrometer for Ice Nuclei (SPIN) in the cirrus regime (-46 to -38°C). Particle number concentration and chemical composition were monitored online by a Condensation Particle Counter (CPC) and the Particle Analysis by Laser Mass Spectrometry (PALMS) instrument, respectively.</p><p>Preliminary experimental results suggest that larger (400 nm) BC particles are more fractal and branching compared with smaller (200-300 nm) particles. Larger, more fractal BC particles are superior ice nucleating particles (INP) when compared with smaller, more spherical ones. The primary particle size distribution of all samples peaks around 30-45 nm. To understand the relevance of the PCF mechanism with our experimental IN results, we established Young-Laplace equations for the potential liquid-vapor interfaces within inter-primary particle crevices and pores and inter-aggregate pores. Solutions of the Young-Laplace equation on a saddle surface was deducted. Whether ice nucleation happens via PCF mechanism or deposition still requires further investigation, since particle surface chemistry can also affect both ice formation pathways.</p>


2012 ◽  
Vol 5 (4) ◽  
pp. 4905-4925 ◽  
Author(s):  
M. Gysel ◽  
M. Laborde ◽  
J. C. Corbin ◽  
A. A. Mensah ◽  
A. Keller ◽  
...  

Abstract. The single particle soot photometer (SP2) uses laser-induced incandescence (LII) for the measurement of atmospheric black carbon (BC) particles. The BC mass concentration is obtained by combining quantitative detection of BC mass in single particles with a counting efficiency of 100% above its lower detection limit (LDL). It is commonly accepted that a particle must contain at least several tenths of femtograms BC in order to be detected by the SP2. Here we show the unexpected result that BC particles from a PALAS spark discharge soot generator remain undetected by the SP2, even if their BC mass, as independently determined with an aerosol particle mass analyser (APM), is clearly above the typical LDL of the SP2. Comparison of counting efficiency and effective density data of PALAS soot with flame generated soot (combustion aerosol standard burner, CAST), fullerene soot and carbon black particles (Cabot Regal 400R) reveals that particle morphology can affect the SP2's LDL. PALAS soot particles are fractal-like agglomerates of very small primary particles with a low fractal dimension, resulting in a very low effective density. Such loosely-packed particles behave like "the sum of individual primary particles" in the SP2's laser. Accordingly, the PALAS soot particles remain undetected as the SP2's laser intensity is insufficient to heat the primary particles to vaporisation because of their small size (primary particle diameter ~5–10 nm). It is not surprising that particle morphology can have an effect on the SP2's LDL, however, such a dramatic effect as reported here for PALAS soot was not expected. In conclusion, the SP2's LDL at a certain laser power depends on total BC mass per particle for compact particles with sufficiently high effective density. However, for fractal-like agglomerates of very small primary particles and low fractal dimension, the BC mass per primary particle determines the limit of detection, independent of the total particle mass. Consequently, care has to be taken when using the SP2 in applications dealing with loosely-packed particles that have very small primary particles as building blocks.


2013 ◽  
Vol 13 (19) ◽  
pp. 9801-9818 ◽  
Author(s):  
P. Spichtinger ◽  
M. Krämer

Abstract. The occurrence of high, persistent ice supersaturation inside and outside cold cirrus in the tropical tropopause layer (TTL) remains an enigma that is intensely debated as the "ice supersaturation puzzle". However, it was recently confirmed that observed supersaturations are consistent with very low ice crystal concentrations, which is incompatible with the idea that homogeneous freezing is the major method of ice formation in the TTL. Thus, the tropical tropopause "ice supersaturation puzzle" has become an "ice nucleation puzzle". To explain the low ice crystal concentrations, a number of mainly heterogeneous freezing methods have been proposed. Here, we reproduce in situ measurements of frequencies of occurrence of ice crystal concentrations by extensive model simulations, driven by the special dynamic conditions in the TTL, namely the superposition of slow large-scale updraughts with high-frequency short waves. From the simulations, it follows that the full range of observed ice crystal concentrations can be explained when the model results are composed from scenarios with consecutive heterogeneous and homogeneous ice formation and scenarios with pure homogeneous ice formation occurring in very slow (< 1 cm s−1) and faster (> 1 cm s−1) large-scale updraughts, respectively. This statistical analysis shows that about 80% of TTL cirrus can be explained by "classical" homogeneous ice nucleation, while the remaining 20% stem from heterogeneous and homogeneous freezing occurring within the same environment. The mechanism limiting ice crystal production via homogeneous freezing in an environment full of gravity waves is the shortness of the gravity waves, which stalls freezing events before a higher ice crystal concentration can be formed.


2015 ◽  
Vol 15 (20) ◽  
pp. 28999-29046 ◽  
Author(s):  
R. Wagner ◽  
A. Kiselev ◽  
O. Möhler ◽  
H. Saathoff ◽  
I. Steinke

Abstract. In spite of the resurgence in ice nucleation research a comparatively small number of studies deal with the phenomenon of pre-activation in heterogeneous ice nucleation. Already fifty years ago, it was shown that various mineral dust and volcanic ash particles can be pre-activated to become nuclei for ice crystal formation even at temperatures as high as 270–271 K. Pre-activation was achieved under ice subsaturated conditions without any preceding macroscopic ice growth by just temporarily cooling the particles to temperatures below 228 K. A two-step mechanism involving capillary condensation of supercooled water and subsequent homogeneous freezing was proposed to account for the particles' enhanced ice nucleation ability at high temperatures. This work reinvestigates the efficiency of the proposed pre-activation mechanism in temperature-cycling experiments performed in a large cloud chamber with suspended particles. We find the efficiency to be highest for the clay mineral illite as well as for highly porous materials like zeolite and diatomaceous earth, whereas most aerosols generated from desert dust surface samples did not reveal a measurable pre-activation ability. The pre-activation efficiency is linked to particle pores in a certain size range. As estimated by model calculations, only pores with diameters between about 5 and 8 nm contribute to pre-activation under ice subsaturated conditions. In contrast to the early study, pre-activation is only observed for temperatures below 260 K. Above that threshold, the particles' improved ice nucleation ability disappears due to the melting of ice in the pores.


2014 ◽  
Vol 953-954 ◽  
pp. 1196-1200 ◽  
Author(s):  
Jian Yi Lv ◽  
Xin Cao ◽  
Cheng Long Meng

Soot is produced in incomplete combustion of fuels, it is harmful to human health and the environment. Sampling points were set along the flame height of different air-fuel ratios in ethylene/air IDF and samples were tested by transmission electron microscopy (TEM). MATLAB software was used to process TEM images, calculated the fractal dimensions of soot samples and analyzed the fractal features. With the increasing of air-fuel ratio, the soot fractal dimension decreases, the size and the number of primary particles included in aggregates increase. With the increasing of flame height, the fractal dimension value decreases, and the size of primary particle increases, the aggregating soot particles are united loose.


2012 ◽  
Vol 12 (10) ◽  
pp. 28109-28153 ◽  
Author(s):  
P. Spichtinger ◽  
M. Krämer

Abstract. The occurrence of high, persistent ice supersaturation inside and outside cold cirrus in the tropical tropopause layer (TTL) remains an enigma that is intensely debated as the "ice supersaturation puzzle". However, it was recently confirmed that observed supersaturations are consistent with very low ice crystal concentrations, which is incompatible with the idea that homogeneous freezing is the major method of ice formation in the TTL. Thus, the tropical tropopause "ice supersaturation puzzle" has become an "ice nucleation puzzle". To explain the low ice crystal concentrations, a number of mainly heterogeneous freezing methods have been proposed. Here, we reproduce in situ measurements of frequencies of occurrence of ice crystal concentrations by extensive model simulations, driven by the special dynamic conditions in the TTL, namely the superposition of slow large-scale updraughts with high-frequency short waves. From the simulations, it follows that the full range of observed ice crystal concentrations can be explained when the model results of the scenarios are mixed for both heterogeneous/homogeneous and pure homogeneous ice formation occurring in very slow (<1 cm s−1) and faster (>1 cm s−1) large-scale updraughts. This statistical analysis shows that about 80% of TTL cirrus can be explained by "classical" homogeneous ice nucleation, while the remaining 20% stem from heterogeneous and homogeneous freezing occurring within the same environment. The mechanism limiting ice crystal production via homogeneous freezing in an environment full of gravity waves is the shortness of the gravity waves, which stalls freezing events before a higher ice crystal concentration can be formed.


2017 ◽  
Vol 200 ◽  
pp. 165-194 ◽  
Author(s):  
Joseph C. Charnawskas ◽  
Peter A. Alpert ◽  
Andrew T. Lambe ◽  
Thomas Berkemeier ◽  
Rachel E. O’Brien ◽  
...  

Anthropogenic and biogenic gas emissions contribute to the formation of secondary organic aerosol (SOA). When present, soot particles from fossil fuel combustion can acquire a coating of SOA. We investigate SOA–soot biogenic–anthropogenic interactions and their impact on ice nucleation in relation to the particles’ organic phase state. SOA particles were generated from the OH oxidation of naphthalene, α-pinene, longifolene, or isoprene, with or without the presence of sulfate or soot particles. Corresponding particle glass transition (Tg) and full deliquescence relative humidity (FDRH) were estimated using a numerical diffusion model. Longifolene SOA particles are solid-like and all biogenic SOA sulfate mixtures exhibit a core–shell configuration (i.e.a sulfate-rich core coated with SOA). Biogenic SOA with or without sulfate formed ice at conditions expected for homogeneous ice nucleation, in agreement with respectiveTgand FDRH. α-pinene SOA coated soot particles nucleated ice above the homogeneous freezing temperature with soot acting as ice nuclei (IN). At lower temperatures the α-pinene SOA coating can be semisolid, inducing ice nucleation. Naphthalene SOA coated soot particles acted as ice nuclei above and below the homogeneous freezing limit, which can be explained by the presence of a highly viscous SOA phase. Our results suggest that biogenic SOA does not play a significant role in mixed-phase cloud formation and the presence of sulfate renders this even less likely. However, anthropogenic SOA may have an enhancing effect on cloud glaciation under mixed-phase and cirrus cloud conditions compared to biogenic SOA that dominate during pre-industrial times or in pristine areas.


2018 ◽  
Vol 18 (18) ◽  
pp. 13363-13392 ◽  
Author(s):  
Fabian Mahrt ◽  
Claudia Marcolli ◽  
Robert O. David ◽  
Philippe Grönquist ◽  
Eszter J. Barthazy Meier ◽  
...  

Abstract. Ice nucleation by different types of soot particles is systematically investigated over the temperature range from 218 to 253 K relevant for both mixed-phase (MPCs) and cirrus clouds. Soot types were selected to represent a range of physicochemical properties associated with combustion particles. Their ice nucleation ability was determined as a function of particle size using relative humidity (RH) scans in the Horizontal Ice Nucleation Chamber (HINC). We complement our ice nucleation results by a suite of particle characterization measurements, including determination of particle surface area, fractal dimension, temperature-dependent mass loss (ML), water vapor sorption and inferred porosity measurements. Independent of particle size, all soot types reveal absence of ice nucleation below and at water saturation in the MPC regime (T>235 K). In the cirrus regime (T≤235 K), soot types show different freezing behavior depending on particle size and soot type, but the freezing is closely linked to the soot particle properties. Specifically, our results suggest that if soot aggregates contain mesopores (pore diameters of 2–50 nm) and have sufficiently low water–soot contact angles, they show ice nucleation activity and can contribute to ice formation in the cirrus regime at RH well below homogeneous freezing of solution droplets. We attribute the observed ice nucleation to a pore condensation and freezing (PCF) mechanism. Nevertheless, soot particles without cavities of the right size and/or too-high contact angles nucleate ice only at or well above the RH required for homogeneous freezing conditions of solution droplets. Thus, our results imply that soot particles able to nucleate ice via PCF could impact the microphysical properties of ice clouds.


Author(s):  
Fengshan Liu ◽  
David R. Snelling ◽  
Gregory J. Smallwood

Histories of temperature and incandescence intensity of nanosecond pulsed-laser heated soot particles of polydispersed primary particles and aggregate sizes were calculated using an aggregate-based heat transfer model at pressures from 1 atm up to 50 atm. The local gas temperature, distributions of soot primary particle diameter and aggregate size assumed in the calculations were similar to those found in an atmospheric laminar diffusion flame. Relatively low laser fluences were considered to keep the peak particle temperatures below about 3400 K to ensure negligible soot particle sublimation. The shielding effect on the heat conduction between aggregated soot particles and the surrounding gas was accounted for based on results of direct simulation Monte Carlo calculations. After the laser pulse, the temperature of soot particles with larger primary particles or larger aggregates cools down slower than those with smaller primary particles or smaller aggregates due to smaller surface area-to-volume ratios. The effective temperature of soot particles in the laser probe volume was calculated based on the ratio of thermal radiation intensities of the soot particle ensemble at 400 and 780 nm. Due to the reduced mean free path of molecules with increasing pressure, the heat conduction between soot particles and the surrounding gas shifts from the free-molecular to the transition regime. Consequently, the rate of conduction heat loss from the soot particles increases significantly with pressure. The lifetime of laser-induced incandescence (LII) signal is significantly reduced as the pressure increases. At high pressures, the time resolved soot particle temperature is very sensitive to both the primary particle diameter and the aggregate size distributions, implying the time-resolved LII particle sizing techniques developed at atmospheric pressure lose their effectiveness at high pressures.


Sign in / Sign up

Export Citation Format

Share Document