scholarly journals Will climate change increase ozone depletion from low-energy-electron precipitation?

2010 ◽  
Vol 10 (4) ◽  
pp. 9895-9916
Author(s):  
A. J. G. Baumgaertner ◽  
P. Jöckel ◽  
M. Dameris ◽  
P. J. Crutzen

Abstract. We investigate the effects of a strengthened Brewer-Dobson circulation on the transport of nitric oxide (NO) produced by energetic particle precipitation. During periods of high geomagnetic activity, low-energy-electron precipitation is responsible for winter time ozone loss in the polar middle atmosphere between 1 and 6 hPa. However, as climate change is expected to increase the strength of the Brewer-Dobson circulation, the enhancements of NOx concentrations are expected to be transported to lower altitudes in extra-tropical regions, becoming even more significant in the ozone budget. We use simulations with the chemistry climate model system ECHAM5/MESSy to compare present day effects of low-energy-electron precipitation with expected effects in a climate change scenario for the year 2100. In years of strong geomagnetic activity, similar to that observed in 2003, an additional polar ozone loss of up to 0.5 μmol/mol at 5 hPa is found. However, this would be approximately compensated by an ozone enhancement originating from a stronger poleward transport of ozone from lower latitudes caused by a strengthened Brewer-Dobson circulation, as well as by slower photochemical ozone loss reactions in a stratosphere cooled by risen greenhouse gas concentrations.

2010 ◽  
Vol 10 (19) ◽  
pp. 9647-9656 ◽  
Author(s):  
A. J. G. Baumgaertner ◽  
P. Jöckel ◽  
M. Dameris ◽  
P. J. Crutzen

Abstract. We investigate the effects of a strengthened stratospheric/mesospheric residual circulation on the transport of nitric oxide (NO) produced by energetic particle precipitation. During periods of high geomagnetic activity, energetic electron precipitation (EEP) is responsible for winter time ozone loss in the polar middle atmosphere between 1 and 6 hPa. However, as climate change is expected to increase the strength of the Brewer-Dobson circulation including extratropical downwelling, the enhancements of EEP NOx concentrations are expected to be transported to lower altitudes in extratropical regions, becoming more significant in the ozone budget. Changes in the mesospheric residual circulation are also considered. We use simulations with the chemistry climate model system EMAC to compare present day effects of EEP NOx with expected effects in a climate change scenario for the year 2100. In years of strong geomagnetic activity, similar to that observed in 2003, an additional polar ozone loss of up to 0.4 μmol/mol at 5 hPa is found in the Southern Hemisphere. However, this would be approximately compensated by an ozone enhancement originating from a stronger poleward transport of ozone from lower latitudes caused by a strengthened Brewer-Dobson circulation, as well as by slower photochemical ozone loss reactions in a stratosphere cooled by risen greenhouse gas concentrations. In the Northern Hemisphere the EEP NOx effect appears to lose importance due to the different nature of the climate-change induced circulation changes.


Radio Science ◽  
1983 ◽  
Vol 18 (6) ◽  
pp. 1151-1165 ◽  
Author(s):  
Sunanda Basu ◽  
Eileen MacKenzie ◽  
Santimay Basu ◽  
H. C. Carlson ◽  
D. A. Hardy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document