scholarly journals Measured and modelled Cloud Condensation Nuclei (CCN) concentration in São Paulo, Brazil: the importance of aerosol size-resolved chemical composition on CCN concentration prediction

2013 ◽  
Vol 13 (12) ◽  
pp. 32353-32389 ◽  
Author(s):  
G. P. Almeida ◽  
J. Brito ◽  
C. A. Morales ◽  
M. F. Andrade ◽  
P. Artaxo

Abstract. Measurements of cloud condensation nuclei (CCN), aerosol size distribution and non-refractory chemical composition were performed from 16 to 31 October 2012 in the São Paulo Metropolitan Area (SPMA), Brazil. CCN measurements were performed at 0.2%, 0.4%, 0.6%, 0.8% and 1.0% water supersaturation and were subsequently compared with Köhler theory, considering the chemical composition. Real-time chemical composition has been obtained deploying for the first time in SPMA an Aerosol Chemical Ionization Monitor (ACSM). CCN closure analyses were performed considering internal mixture. Average aerosol composition during the studied period yielded 4.81 ± 3.05, 3.26 ± 2.10, 0.30 ± 0.27, 0.52 ± 0.32, 0.37 ± 0.21 and 0.04 ± 0.04 μg m−3 for organics, BC, NH4, SO4, NO3 and Cl, respectively. Particle number concentration was 12 813 ± 5350 cm−3, being a large fraction in the nucleation mode. CCN concentrations were on average 1090 ± 328 cm−3 and 3570 ± 1695 cm−3 at SS = 0.2% and SS = 1.0%, respectively. Results show an increase in aerosol hygroscopicity in the afternoon as a result of aerosol photochemical processing, leading to an enhancement of both organic and inorganic secondary aerosols in the atmosphere, as well as an increase in aerosol average diameter. Considering the bulk composition alone, CCN concentrations were substantially overpredicted (29.6 ± 45.1% at 0.2% supersaturation and 57.3 ± 30.0% at 1.0% supersaturation). Overall, the impact of composition on the calculated NCCN decreases with decreasing supersaturation, partially because using bulk composition introduces less bias for large diameters and lower critical supersaturations. Results suggest that the consideration of only inorganic fraction improves the calculated NCCN. Introducing a size-dependent chemical composition based on filter measurements from previous campaigns has considerably improved simulated values for NCCN (average overprediction error 3.0 ± 33.4% at 0.20% supersaturation and average under prediction error 2.4 ± 20.5% at 1.0% supersaturation). This study provides the first insight on aerosol real-time composition and hygroscopicity on a~site strongly impacted by emissions of a unique vehicular fleet due to the extensive biofuel usage.

2014 ◽  
Vol 14 (14) ◽  
pp. 7559-7572 ◽  
Author(s):  
G. P. Almeida ◽  
J. Brito ◽  
C. A. Morales ◽  
M. F. Andrade ◽  
P. Artaxo

Abstract. Measurements of cloud condensation nuclei (CCN), aerosol size distribution and non-refractory chemical composition were performed from 16 to 31 October 2012 in the São Paulo Metropolitan Area (SPMA), Brazil. CCN measurements were performed at 0.23, 0.45, 0.68, 0.90 and 1.13% water supersaturation and were subsequently compared with the Köhler theory, considering the chemical composition. Real-time chemical composition has been obtained by deploying, for the first time in the SPMA, an aerosol chemical ionization monitor (ACSM). CCN closure analyses were performed considering internal mixtures. Average aerosol composition during the studied period yielded (arithmetic mean~± standard deviation) 4.81 ± 3.05, 3.26 ± 2.10, 0.30 ± 0.27, 0.52 ± 0.32, 0.37 ± 0.21 and 0.04 ± 0.04 μg m−3 for organics, BC, NH4, SO4, NO3 and Cl, respectively. Particle number concentration was 12 813 ± 5350 cm−3, with a dominant nucleation mode. CCN concentrations were on average 1090 ± 328 and 3570 ± 1695 cm−3 at SS = 0.23% and SS = 1.13%, respectively. Results show an increase in aerosol hygroscopicity in the afternoon as a result of aerosol photochemical processing, leading to an enhancement of both organic and inorganic secondary aerosols in the atmosphere, as well as an increase in aerosol average diameter. Considering the bulk composition alone, observed CCN concentrations were substantially overpredicted when compared with the Köhler theory (44.1 ± 47.9% at 0.23% supersaturation and 91.4 ± 40.3% at 1.13% supersaturation). Overall, the impact of composition on the calculated CCN concentration (NCCN) decreases with decreasing supersaturation, partially because using bulk composition introduces less bias for large diameters and lower critical supersaturations, defined as the supersaturation at which the cloud droplet activation will take place. Results suggest that the consideration of only inorganic fraction improves the calculated NCCN. Introducing a size-dependent chemical composition based on filter measurements from previous campaigns has considerably improved simulated values for NCCN (average overprediction error 14.8 ± 38.6% at 0.23% supersaturation and 3.6 ± 21.6% at 1.13% supersaturation). This study provides the first insight on aerosol real-time composition and hygroscopicity at a site strongly impacted by emissions of a unique vehicular fleet due to the extensive biofuel usage.


2012 ◽  
Vol 12 (8) ◽  
pp. 3783-3790 ◽  
Author(s):  
Q. Zhang ◽  
J. Meng ◽  
J. Quan ◽  
Y. Gao ◽  
D. Zhao ◽  
...  

Abstract. The impact of aerosol composition on cloud condensation nuclei (CCN) activity were analyzed in this study based on field experiments carried out at downtown Tianjin, China in September 2010. In the experiments, the CCN measurements were performed at supersaturation (SS) of 0.1%, 0.2% and 0.4% using a thermal-gradient diffusion chamber (DMT CCNC), whereas the aerosol size distribution and composition were simultaneously measured with a TSI SMPS and an Aerodyne Aerosol Mass Spectrometer (AMS), respectively. The results show that the influence of aerosol composition on CCN activity is notable under low SS (0.1%), and their influence decreased with increasing SS. For example, under SS of 0.1%, the CCN activity increases from 4.5±2.6% to 12.8±6.1% when organics fraction decrease from 30–40% to 10–20%. The rate of increase reached up to 184%. While under SS of 0.4%, the CCN activity increases only from 35.7±19.0% to 46.5±12.3% correspondingly. The calculated NCCN based on the size-resolved activation ratio and aerosol number size distribution correlated well with observed NCCN at high SS (0.4%), but this consistence decreased with the falling of SS. The slopes of linear fitted lines between calculated and observed NCCN are 0.708, 0.947, and 0.995 at SS of 0.1%, 0.2% and 0.4% respectively. Moreover, the stand deviation (SD) of calculated NCCN increased with the decreasing of SS. A case study of CCN closure analyses indicated that the calculated error of NCCN could reach up to 34% at SS of 0.1% if aerosol composition were not included, and the calculated error decreased with the raising of SS. It is decreased to 9% at SS of 0.2%, and further decreased to 4% at SS of 0.4%.


2012 ◽  
Vol 12 (1) ◽  
pp. 1493-1516
Author(s):  
Q. Zhang ◽  
J. Meng ◽  
J. Quan ◽  
Y. Gao ◽  
D. Zhao ◽  
...  

Abstract. The impact of aerosol composition on cloud condensation nuclei (CCN) activity was analyzed in this study based on field experiments carried out at downtown Tianjin, China, in September 2010. In the experiments, the CCN measurements were performed at supersaturation (SS) of 0.1%, 0.2% and 0.4% using a thermal-gradient diffusion chamber (DMT CCNC), whereas the aerosol size distribution and composition were simultaneously measured with a TSI SMPS and an Aerodyne Aerosol Mass Spectrometer (AMS), respectively. The results show that the influence of aerosol composition on CCN activity is notable under low SS (0.1%), and their influence decreased with increasing SS. For example, under SS of 0.1%, the CCN activity increases from 4.5 ± 2.6% to 12.8 ± 6.1% when organics fraction decrease from 30–40% to 10–20%. The rate of increase reaches up to 184%. While under SS of 0.4%, the CCN activity increases only from 35.7 ± 19.0% to 46.5 ± 12.3%, correspondingly. The calculated NCCN based on the size-resolved activation ratio and aerosol number size distribution correlates well with observed NCCN at high SS (0.4%), but this correlation decreases with the falling of SS. The slopes of linear fitted lines between calculated and observed NCCN are 0.708, 0.947, and 0.995 at SS of 0.1%, 0.2% and 0.4%, respectively. Moreover, the standard deviation (SD) of calculated NCCN increases with the decreasing of SS. A case study of CCN closure analyses indicates that the calculated error of NCCN can reach up to 34% at SS of 0.1% if aerosol composition is not included, and the calculated error decreases with the raising of SS. It decreases to 9% at SS of 0.2%, and further decreases to 4% at SS of 0.4%.


2016 ◽  
Author(s):  
Carlos Eduardo Souto-Oliveira ◽  
Maria de Fátima Andrade ◽  
Prashant Kumar ◽  
Fábio Juliano da Silva Lopes ◽  
Marly Babinski ◽  
...  

Abstract. Atmospheric aerosol is the most important source of cloud condensation nuclei (CCN). Microphysics and chemical composition of aerosols can affect cloud development and precipitation process. Only a few studies in Latin American have reported the impact of urban aerosol on CCN activation parameters such as activated ratio (AR) and activation diameter (Dact). Sao Paulo Metropolitan Area (SPMA) is the biggest megacity of South America with over 20 million inhabitants. This is the first study in a megacity on South America to assess the impact of remote sources and new particle formation (NPF) events on CCN activation properties. The measurements were conducted at São Paulo city from August to September 2014. The CCN were measured within the 0.2–1.0 % range of supersaturation, simultaneous with particle number concentration (PNC) and distribution (PND), trace elemental concentrations (TEC) and black carbon (BC). The NPF events were identified during 35 % of the sampling days. Combination of TEC and BC associated with aerosol profile from Lidar analysis and Hysplit trajectories allowed to identify sea-salt and biomass burning contribution from remote regions as 28 % and 21 % of total number of days, respectively. The AR and Dact parameters presented a clearly different pattern for diurnal and nocturnal periods. The diurnal periods presented lower CCN activation than the nocturnal durations and this pattern was found to be associated mainly with local vehicular traffic emissions. NPF events showed a negative feedback to CCN activation. Weak effects of sea-salt and biomass burning aerosols could be observed on activation parameters as sea-salt showed a positive feedback. The results of this study show that particulate matter from local traffic emissions has the main effect on activation parameters compared with remote sources.


2009 ◽  
Vol 9 (18) ◽  
pp. 7053-7066 ◽  
Author(s):  
A. Bougiatioti ◽  
C. Fountoukis ◽  
N. Kalivitis ◽  
S. N. Pandis ◽  
A. Nenes ◽  
...  

Abstract. Measurements of cloud condensation nuclei (CCN) concentrations (cm−3) between 0.2 and 1.0% supersaturation, aerosol size distribution and chemical composition were performed at a remote marine site in the eastern Mediterranean, from September to October 2007 during the FAME07 campaign. Most of the particles activate at ~0.6% supersaturation, characteristic of the aged nature of the aerosol sampled. Application of Köhler theory, using measurements of bulk composition, size distribution, and assuming that organics are insoluble resulted in agreement between predicted and measured CCN concentrations within 7±11% for all supersaturations, with a tendency for CCN underprediction (16±6%; r2=0.88) at the lowest supersaturations (0.21%). Including the effects of the water-soluble organic fraction (which represent around 70% of the total organic content) reduces the average underprediction bias at the low supersaturations, resulting in a total closure error of 0.6±6%. Using threshold droplet growth analysis, the growth kinetics of ambient CCN is consistent with NaCl calibration experiments; hence the presence of aged organics does not suppress the rate of water uptake in this environment. The knowledge of the soluble salt fraction is sufficient for the description of the CCN activity in this area.


2021 ◽  
Vol 21 (13) ◽  
pp. 9995-10004
Author(s):  
Gang Zhao ◽  
Yishu Zhu ◽  
Zhijun Wu ◽  
Taomou Zong ◽  
Jingchuan Chen ◽  
...  

Abstract. New particle formation (NPF) is thought to contribute half of the global cloud condensation nuclei. A better understanding of the NPF at different altitudes can help assess the impact of NPF on cloud formation and corresponding physical properties. However, NPF is not sufficiently understood in the upper mixing layer because previous studies mainly focused on ground-level measurements. In this study, the developments of aerosol size distribution at different altitudes are characterized based on the field measurement conducted in January 2019 in Beijing, China. We find that the partition of nucleation-mode particles in the upper mixing layer is larger than that at the ground, which implies that the nucleation processing is more likely to happen in the upper mixing layer than that at the ground. Results of the radiative transfer model show that the photolysis rates of the nitrogen dioxide and ozone increase with altitude within the mixing layer, which leads to a higher concentration of sulfuric acid in the upper mixing layer than that at the ground. Therefore, the nucleation processing in the upper mixing layer should be stronger than that at the ground, which is consistent with our measurement results. Our study emphasizes the influence of aerosol–radiation interaction on the NPF. These results have the potential to improve our understanding of the source of cloud condensation nuclei on a global scale due to the impacts of aerosol–radiation interaction.


2020 ◽  
Vol 20 (11) ◽  
pp. 6953-6971 ◽  
Author(s):  
Zainab Arub ◽  
Sahil Bhandari ◽  
Shahzad Gani ◽  
Joshua S. Apte ◽  
Lea Hildebrandt Ruiz ◽  
...  

Abstract. Delhi is a megacity subject to high local anthropogenic emissions and long-range transport of pollutants. This work presents for the first time time-resolved estimates of hygroscopicity parameter (κ) and cloud condensation nuclei (CCN), spanning for more than a year, derived from chemical composition and size distribution data. As a part of the Delhi Aerosol Supersite (DAS) campaign, the characterization of aerosol composition and size distribution was conducted from January 2017 to March 2018. Air masses originating from the Arabian Sea (AS), Bay of Bengal (BB), and southern Asia (SA) exhibited distinct characteristics of time-resolved sub-micron non-refractory PM1 (NRPM1) species, size distributions, and CCN number concentrations. The SA air mass had the highest NRPM1 loading with high chloride and organics, followed by the BB air mass, which was more contaminated than AS, with a higher organic fraction and nitrate. The primary sources were identified as biomass-burning, thermal power plant emissions, industrial emissions, and vehicular emissions. The average hygroscopicity parameter (κ), calculated by the mixing rule, was approximately 0.3 (varying between 0.13 and 0.77) for all the air masses (0.32±0.06 for AS, 0.31±0.06 for BB, and 0.32±0.10 for SA). The diurnal variations in κ were impacted by the chemical properties and thus source activities. The total, Aitken, and accumulation mode number concentrations were higher for SA, followed by BB and AS. The mean values of estimated CCN number concentration (NCCN; 3669–28926 cm−3) and the activated fraction (af; 0.19–0.87), for supersaturations varying from 0.1 % to 0.8 %, also showed the same trend, implying that these were highest in SA, followed by those in BB and then those in AS. The size turned out to be more important than chemical composition directly, and the NCCN was governed by either the Aitken or accumulation modes, depending upon the supersaturation (SS) and critical diameter (Dc). af was governed mainly by the geometric mean diameter (GMD), and such a high af (0.71±0.14 for the most dominant sub-branch of the SA air mass – R1 – at 0.4 % SS) has not been seen anywhere in the world for a continental site. The high af was a consequence of very low Dc (25–130 nm, for SS ranging from 0.1 % to 0.8 %) observed for Delhi. Indirectly, the chemical properties also impacted CCN and af by impacting the diurnal patterns of Aitken and accumulation modes, κ and Dc. The high-hygroscopic nature of aerosols, high NCCN, and high af can severely impact the precipitation patterns of the Indian monsoon in Delhi, impact the radiation budget, and have indirect effects and need to be investigated to quantify this impact.


2010 ◽  
Vol 10 (2) ◽  
pp. 4189-4223 ◽  
Author(s):  
D. S. Ward ◽  
T. Eidhammer ◽  
W. R. Cotton ◽  
S. M. Kreidenweis

Abstract. Variations in the chemical composition of atmospheric aerosols alter their hygroscopicity and can lead to changes in the cloud-active fraction of the aerosols, or cloud condensation nuclei (CCN) number concentration. To investigate the importance of this effect under different atmospheric conditions, cloud droplet formation was simulated with a Lagrangian parcel model. Initial values of updraft speed and temperature were systematically varied along with aerosol number concentration, size and hygroscopicity (represented by the hygroscopicity parameter, κ). A previous study classifies the sensitivity of CCN activity to compositional changes based on the supersaturation reached in the parcel model. We found that these classifications could not be generalized to a range of aerosol size distribution median radii. Instead, variations in sensitivity with size depend on the location of the dry critical radius for droplet activation relative to the size distribution median radius. The parcel model output was used to construct droplet activation lookup tables based on κ that were implemented in the Regional Atmospheric Modeling System (RAMS) microphysical scheme. As a first application of this system, aerosol hygroscopicity and size were varied in a series of RAMS mesoscale simulations designed to investigate the sensitivity of a mixed-phase orographic cloud case to the parameter variations. Observations from a recent field campaign in northwestern Colorado provided the basis for the aerosol field initializations. Model results show moderate sensitivity in the distribution of total case precipitation to extreme changes in κ, and minimal sensitivity to observed changes in estimated κ. The impact of varying aerosol hygroscopicity diminished with increasing median radius, as expected from the parcel model results. The conclusions drawn from these simulations could simplify similar research in other cloud regimes by defining the need, or lack of need, for detailed knowledge of aerosol composition.


2005 ◽  
Vol 5 (4) ◽  
pp. 6263-6293 ◽  
Author(s):  
K. Broekhuizen ◽  
R. Y.-W. Chang ◽  
W. R. Leaitch ◽  
S.-M. Li ◽  
J. P. D. Abbatt

Abstract. Measurements of cloud condensation nuclei (CCN) were made in downtown Toronto during August and September, 2003. CCN measurements were performed at 0.58% supersaturation using a thermal-gradient diffusion chamber, whereas the aerosol size distribution and composition were simultaneously measured with a TSI SMPS and APS system and an Aerodyne Aerosol Mass Spectrometer (AMS), respectively. Aerosol composition data shows that the particles were predominately organic in nature, in particular for those with a vacuum aerodynamic diameter of <25 μm. In this study, the largest contribution to CCN concentrations came from this size range, suggesting that the CCN are also organic-rich. Using the size and composition information, a detailed CCN closure analysis was performed. In all analyses, the particles were assumed to be internally mixed, the organic fraction was assumed to be insoluble, and the inorganic fraction was assumed to be ammonium sulfate. The AMS time-of-flight data were used for Köhler theory predictions for each particle size and composition to obtain the dry diameter required for activation. By so doing, this closure analysis yielded an average value of CCNpredicted/CCNobserved= 1.04 (R2=0.87). Several other closure analyses were performed to mimic other methods of aerosol compositional analysis. In all cases, by assuming uniform aerosol composition across a wider range of particle sizes, significant overprediction of CCN concentrations resulted.


2018 ◽  
Author(s):  
Manuel Dall'Osto ◽  
David C. S. Beddows ◽  
Peter Tunved ◽  
Roy M. Harrison ◽  
Angelo Lupi ◽  
...  

Abstract. Understanding aerosol size distributions is crucial to our ability to predict aerosol number concentrations. When of favourable size and composition, both long range transported particles as well as locally formed ones may serve as Cloud Condensation Nuclei (CCN); small changes may have a large impact on the low CCN concentrations currently characteristic of the Arctic environment. Here, we present a cluster analysis of particle size distributions (PSD, size range 8–500 nm) simultaneously collected from three high Arctic sites across Europe during a three year period (2013–2015). Two sites are located in the Svalbard archipelago: Zeppelin research station (474 m above ground), and the nearby Gruvebadet Observatory (about 2 km distance from Zepplelin, 67 m above ground). The third site (Villum Research Station – Station Nord, 30 m above ground) is 600 km to the west-northwest of Zeppelin, at the tip of north-eastern Greenland. An inter-site comparison exercise is carried out for the first time including the Gruvebadet site. K-means analysis provided eight specific aerosol categories, further combined into broad PSD with similar characteristics, namely: pristine low concentrations (12–14 %), new particle formation (16–32 %), Aitken (21–35 %) and accumulation (20–50 %). Confined for longer time periods by consolidated pack sea ice regions, the Greenland site shows PSD with lower ultrafine mode aerosol concentrations during summer, but higher accumulation mode aerosol concentrations during winter relative to the Svalbard sites. By association with chemical composition and Cloud Condensation Nuclei properties, further conclusions can be derived. Three distinct types of accumulation mode aerosol are observed during winter months, associated with sea spray (largest detectable sizes), Arctic haze (main mode at 150 nm) and aged accumulation mode (main mode at 220 nm) aerosols. In contrast, locally produced and most likely of marine biogenic origin particles exhibit size distributions dominated by the nucleation and Atiken mode aerosol during summer months. The obtained data and analysis set now the stage for future studies; including apportioning the relative contribution of primary and secondary aerosol formation processes to the aerosol size distribution in high Arctic, and elucidating anthropogenic aerosol dynamics, transport and removal processes across the Greenland sea. In a region of enormous importance for future climate on Earth, it is imperative to continue strengthening international scientific cooperation, in order to address important research questions on scales beyond singular station or measurement events.


Sign in / Sign up

Export Citation Format

Share Document