scholarly journals Sentinel-5P TROPOMI NO<sub>2</sub> retrieval: impact of version v2.2 improvements and comparisons with OMI and ground-based data

2021 ◽  
Author(s):  
Jos van Geffen ◽  
Henk Eskes ◽  
Steven Compernolle ◽  
Gaia Pinardi ◽  
Tijl Verhoelst ◽  
...  

Abstract. Nitrogen dioxide (NO2) is one of the main data products measured by the Tropospheric Monitoring Instrument (TROPOMI) on the Sentinel-5 Precursor (S5P) satellite, which combines a high signal-to-noise ratio with daily global coverage and high spatial resolution. TROPOMI provides a valuable source of information to monitor emissions from local sources such as power plants, industry, cities, traffic and ships, and variability of these sources in time. Validation exercises of NO2 version v1.2-v1.3 data, however, have revealed that TROPOMI's tropospheric vertical columns (VCDs) are too low by up to 50 % over highly polluted areas. These findings are mainly attributed to biases in the cloud pressure retrieval, the surface albedo climatology and the low resolution of the a-priori profiles derived from global simulations of the TM5-MP chemistry model. This study describes improvements in the TROPOMI NO2 retrieval leading to version v2.2, operational since 1 July 2021. Compared to v1.x, the main changes are: (1) The NO2-v2.2 data is based on version 2 level-1B (ir)radiance spectra with improved calibration, which results in a small and fairly homogeneous increase of the NO2 slant columns of 3 to 4 %, most of which ends up as a small increase of the stratospheric columns; (2) The cloud pressures are derived with a new version of the FRESCO cloud retrieval already introduced in NO2-v1.4, which lead to a lowering of the cloud pressure, resulting in larger tropospheric NO2 columns over polluted scenes with a small but non-zero cloud coverage; (3) For cloud-free scenes a surface albedo correction is introduced based on the observed reflectance, which also leads to a general increase of the tropospheric NO2 columns over polluted scenes of order 15 %; (4) An outlier removal was implemented in the spectral fit, which increases the number of good quality retrievals over the South-Atlantic Anomaly region and over bright clouds where saturation may occur; (5) Snow-Ice information is now obtained from ECMWF weather data, increasing the number of valid retrievals at high latitudes. On average the NO2-v2.2 data have tropospheric VCDs that are between 10 and 40 % larger than the v1.x data, depending on the level of pollution and season; the largest impact is found at mid- and high-latitudes in wintertime. This has brought these tropospheric NO2 closer to OMI observations. Ground-based validation shows on average an improvement of the negative bias of the stratospheric (from −6 % to −3 %), tropospheric (from −32 % to −23 %) and total (from −12 % to −5 %) columns. For individual measurement stations, however, the picture is more complicated, in particular for the tropospheric and total columns.

2020 ◽  
Vol 64 (1-4) ◽  
pp. 951-958
Author(s):  
Tianhao Liu ◽  
Yu Jin ◽  
Cuixiang Pei ◽  
Jie Han ◽  
Zhenmao Chen

Small-diameter tubes that are widely used in petroleum industries and power plants experience corrosion during long-term services. In this paper, a compact inserted guided-wave EMAT with a pulsed electromagnet is proposed for small-diameter tube inspection. The proposed transducer is noncontact, compact with high signal-to-noise ratio and unattractive to ferromagnetic tubes. The proposed EMAT is designed with coils-only configuration, which consists of a pulsed electromagnet and a meander pulser/receiver coil. Both the numerical simulation and experimental results validate its feasibility on generating and receiving L(0,2) mode guided wave. The parameters for driving the proposed EMAT are optimized by performance testing. Finally, feasibility on quantification evaluation for corrosion defects was verified by experiments.


2021 ◽  
Vol 13 (1) ◽  
pp. 168781402098732
Author(s):  
Ayisha Nayyar ◽  
Ummul Baneen ◽  
Syed Abbas Zilqurnain Naqvi ◽  
Muhammad Ahsan

Localizing small damages often requires sensors be mounted in the proximity of damage to obtain high Signal-to-Noise Ratio in system frequency response to input excitation. The proximity requirement limits the applicability of existing schemes for low-severity damage detection as an estimate of damage location may not be known  a priori. In this work it is shown that spatial locality is not a fundamental impediment; multiple small damages can still be detected with high accuracy provided that the frequency range beyond the first five natural frequencies is utilized in the Frequency response functions (FRF) curvature method. The proposed method presented in this paper applies sensitivity analysis to systematically unearth frequency ranges capable of elevating damage index peak at correct damage locations. It is a baseline-free method that employs a smoothing polynomial to emulate reference curvatures for the undamaged structure. Numerical simulation of steel-beam shows that small multiple damages of severity as low as 5% can be reliably detected by including frequency range covering 5–10th natural frequencies. The efficacy of the scheme is also experimentally validated for the same beam. It is also found that a simple noise filtration scheme such as a Gaussian moving average filter can adequately remove false peaks from the damage index profile.


2019 ◽  
Vol 12 (12) ◽  
pp. 6273-6301
Author(s):  
Edward Malina ◽  
Haili Hu ◽  
Jochen Landgraf ◽  
Ben Veihelmann

Abstract. Retrievals of methane isotopologues have the potential to differentiate between natural and anthropogenic methane sources types, which can provide much needed information about the current global methane budget. We investigate the feasibility of retrieving the second most abundant isotopologue of atmospheric methane (13CH4, roughly 1.1 % of total atmospheric methane) from the shortwave infrared (SWIR) channels of the future Sentinel-5/ultra-violet, visible, near-infrared, shortwave infrared (UVNS) and current Copernicus Sentinel-5 Precursor TROPOspheric Monitoring Instrument (TROPOMI) instruments. With the intended goal of calculating the δ13C value, we assume that a δ13C uncertainty of better than 1 ‰ is sufficient to differentiate between source types, which corresponds to a 13CH4 uncertainty of <0.02 ppb. Using the well-established information content analysis techniques and assuming clear-sky, non-scattering conditions, we find that the SWIR3 (2305–2385 nm) channel on the TROPOMI instrument can achieve a mean uncertainty of <1 ppb, while the SWIR1 channel (1590–1675 nm) on the Sentinel-5 UVNS instrument can achieve <0.68 ppb or <0.2 ppb in high signal-to-noise ratio (SNR) cases. These uncertainties combined with significant spatial and/or temporal averaging techniques can reduce δ13C uncertainty to the target magnitude or better. However, we find that 13CH4 retrievals are highly sensitive to errors in a priori knowledge of temperature and pressure, and accurate knowledge of these profiles is required before 13CH4 retrievals can be performed on TROPOMI and future Sentinel-5/UVNS data. In addition, we assess the assumption that scattering-induced light path errors are cancelled out by comparing the δ13C values calculated for non-scattering and scattering scenarios. We find that there is a minor bias in δ13C values from scattering and non-scattering retrievals, but this is unrelated to scattering-induced errors.


2020 ◽  
Author(s):  
Alexis Merlaud ◽  
Livio Belegante ◽  
Daniel-Eduard Constantin ◽  
Mirjam Den Hoed ◽  
Andreas Carlos Meier ◽  
...  

Abstract. The Airborne ROmanian Measurements of Aerosols and Trace gases (AROMAT) campaigns took place in Romania in September 2014 and August 2015. They focused on two sites: the Bucharest urban area and the power plants in the Jiu Valley. Their main objectives were to test recently developed airborne observation systems dedicated to air quality studies and to verify the concept of such campaigns in support of the validation of spaceborne atmospheric missions such as TROPOspheric Monitoring Instrument (TROPOMI)/Sentinel-5 Precursor (S5P). We show that tropospheric NO2 vertical column density (VCD) measurements using airborne mapping instruments are valuable for satellite validation. The signal to noise ratio of the airborne NO2 measurements is one order of magnitude higher than its spaceborne counterpart when the airborne measurements are averaged at the TROPOMI pixel scale. A significant source of comparison error appears to be the time variation of the NO2 VCDs during a flight, which we estimated at about 4 x 1015 molec cm-2 in the AROMAT conditions. Considering the random error of the TROPOMI tropospheric NO2 VCD (σ), the dynamic range of the NO2 VCDs field extends from detection limit up to 37σ (2.6 x 1016 molec cm-2) or 29σ (2 x 1016 molec cm-2) for Bucharest and the Jiu Valley, respectively. For the two areas, we simulate validation exercises of the TROPOMI tropospheric NO2 product using airborne measurements. These simulations indicate that we can closely approach the TROPOMI optimal target accuracy of 25 % by adding NO2 and aerosol profile information to the mapping data, which constrains the investigated accuracy within 28 %. In addition to NO2, we also measured significant amounts of SO2 in the Jiu Valley, as well as a hotspot of H2CO in the center of Bucharest. For these two species, we conclude that the best validation strategy would consist in deploying ground-based measurement systems at key locations which the AROMAT observations help identify.


1984 ◽  
Vol 88 ◽  
pp. 87-98 ◽  
Author(s):  
W.J. Merline

Recent advances in instrumentation and technique have provided hope that changes in stellar radial velocities can be measured with an accuracy of 10 m/s. This tremendous increase in the precision of radial velocity measurements should yield a wealth of new information from studies of stellar oscillations and surface phenomena, as well as offer clues to help answer perhaps the most exciting question, that of the existence of extra-solar planetary systems. The stringent requirements of light scrambling, high signal-to-noise ratio, and the need for frequent or simultaneous calibration (Griffin and Griffin 1973; Serkowski 1978) mean that these new techniques are inherently inefficient. This has limited studies to bright stars and to the use of large telescopes. Without a priori knowledge of the inclination of the rotation axes of the stars under study, searches for planetary systems will require a relatively large number of stars to statistically determine the probability that any of these stars harbor planets. Therefore, it is necessary to extend the limits for precise radial velocity studies to 5th or 6th blue/visual magnitude. Efficient extraction of radial velocity information from the spectrum is essential. Furthermore, attempts to increase limiting precision or decrease limiting magnitudes using conventional techniques will also benefit from increased efficiency.


2021 ◽  
Author(s):  
Jos van Geffen ◽  
Henk Eskes ◽  
Maarten Sneep ◽  
Gaia Pinardi ◽  
Tijl Verhoelst ◽  
...  

&lt;p&gt;The Tropospheric Monitoring Instrument (TROPOMI) on the Sentinel-5 Precursor (S5P) satellite is a unique instrument, combining daily global coverage, very high signal-to-noise, a broad spectral range and very small pixels up to 3.5 x 5.5 km&lt;sup&gt;2&lt;/sup&gt;. Retrievals are available for a large number of species, including NO&lt;sub&gt;2&lt;/sub&gt;. Due to the very small pixels and daily revisit, TROPOMI provides detailed information on individual sources and source sectors like individual power plants, industrial complexes, cities and suburbs, highways, and even individual ships. The TROPOMI Level-2 NO&lt;sub&gt;2&lt;/sub&gt; product is available from 30 April 2018 onwards.&lt;/p&gt;&lt;p&gt;Validation exercises of TROPOMI v1.2 &amp; v1.3 data (2018-2020) with OMI and ground-based remote sensing observations have shown that TROPOMI's tropospheric NO&lt;sub&gt;2&lt;/sub&gt; column are low by up to 50% over highly polluted areas compared to independent data. In contrast, the underlying slant columns of TROPOMI agree well with OMI and independent SAOZ observations. Differences between OMI and TROPOMI have been mainly attributed to the different cloud height retrieval, using the O&lt;sub&gt;2&lt;/sub&gt;-O&lt;sub&gt;2&lt;/sub&gt; versus O&lt;sub&gt;2&lt;/sub&gt;-A bands respectively.&lt;/p&gt;&lt;p&gt;In our presentation we discuss recent improvements in the TROPOMI NO&lt;sub&gt;2&lt;/sub&gt; retrieval and the impact these have on the tropospheric columns and on the comparisons with OMI and ground-based remote-sensing data.&lt;/p&gt;&lt;p&gt;Version v1.4, which became operational on 2 December 2020, entails a major improvement in the cloud height retrieval, based on a modification of the FRESCO-S cloud retrieval using the O&lt;sub&gt;2&lt;/sub&gt;-A band observations. In particular the cloud height over scenes with a small cloud coverage have increased, resulting in larger tropospheric columns in the retrievals over polluted areas.&lt;/p&gt;&lt;p&gt;Version v2.2, to become operational in April/May 2021, includes similar cloud retrieval modifications. Furthermore, it provides a better treatment of saturation issues and transients, is using improved (ir)radiance measurements (level-1b v2 spectra) including degradation corrections, and includes a new albedo treatment.&lt;/p&gt;&lt;p&gt;The TROPOMI NO&lt;sub&gt;2&lt;/sub&gt; retrievals are compared with OMI retrievals (from the QA4ECV product) and to ground-based observations with MAXDOAS and PANDORA instruments.&lt;/p&gt;


2021 ◽  
Author(s):  
Silvia Casarotto ◽  
Matteo Fecchio ◽  
Mario Rosanova ◽  
Giuseppe Varone ◽  
Sasha D'Ambrosio ◽  
...  

Background The impact of transcranial magnetic stimulation (TMS) on cortical neurons is currently hard to predict based on a priori biophysical and anatomical knowledge alone. This problem can hamper the reliability and reproducibility of protocols aimed at measuring electroencephalographic (EEG) responses to TMS. New Method We introduce and release a novel software tool to facilitate and standardize the acquisition of TMS-evoked potentials (TEPs). The tool, rt-TEP (real-time TEP), interfaces with different EEG amplifiers and offers a series of informative visualization modes to assess in real time the immediate impact of TMS on the underlying neuronal circuits. Results We show that rt-TEP can be used to abolish or minimize magnetic and muscle artifacts contaminating the post-stimulus period thus affording a clear visualization and quantification of the amplitude of the early (<50 ms) EEG response after averaging a limited number of trials. This real-time readout can then be used to adjust TMS parameters (e.g. site, orientation, intensity) and experimental settings (e.g. loudness and/or spectral features of the noise masking) to ultimately maximize direct cortical effects over the undesired sensory effects of the coil's discharge. Comparison with Existing Methods The ensemble of real-time visualization modes of rt-TEP are not implemented in any current commercial software and provide a key readout to titrate TMS parameters beyond the a priori information provided by anatomical models. Conclusions Real-time optimization of stimulation parameters with rt-TEP can facilitate the acquisition of reliable TEPs with a high signal-to-noise ratio and improve the standardization and reproducibility of data collection across laboratories.


2018 ◽  
Author(s):  
Satish Kodali ◽  
Liangshan Chen ◽  
Yuting Wei ◽  
Tanya Schaeffer ◽  
Chong Khiam Oh

Abstract Optical beam induced resistance change (OBIRCH) is a very well-adapted technique for static fault isolation in the semiconductor industry. Novel low current OBIRCH amplifier is used to facilitate safe test condition requirements for advanced nodes. This paper shows the differences between the earlier and novel generation OBIRCH amplifiers. Ring oscillator high standby leakage samples are analyzed using the novel generation amplifier. High signal to noise ratio at applied low bias and current levels on device under test are shown on various samples. Further, a metric to demonstrate the SNR to device performance is also discussed. OBIRCH analysis is performed on all the three samples for nanoprobing of, and physical characterization on, the leakage. The resulting spots were calibrated and classified. It is noted that the calibration metric can be successfully used for the first time to estimate the relative threshold voltage of individual transistors in advanced process nodes.


Nanophotonics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 2569-2576 ◽  
Author(s):  
Lu Li ◽  
Lihui Pang ◽  
Qiyi Zhao ◽  
Yao Wang ◽  
Wenjun Liu

AbstractTransition metal dichalcogenides have been widely utilized as nonlinear optical materials for laser pulse generation applications. Herein, we study the nonlinear optical properties of a VS2-based optical device and its application as a new saturable absorber (SA) for high-power pulse generation. Few-layer VS2 nanosheets are deposited on the tapered region of a microfiber to form an SA device, which shows a modulation depth of 40.52%. After incorporating the microfiber-VS2 SA into an Er-doped fiber laser cavity, passively Q-switched pulse trains could be obtained with repetition rates varying from 95 to 233 kHz. Under the pump power of 890 mW, the largest output power and shortest pulse duration are measured to be 43 mW and 854 ns, respectively. The high signal-to-noise ratio of 60 dB confirms the excellent stability of the Q-switching state. To the best of our knolowdge, this is the first illustration of using VS2 as an SA. Our experimental results demonstrate that VS2 nanomaterials have a large potential for nonlinear optics applications.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 900
Author(s):  
Ioanna Skoulidou ◽  
Maria-Elissavet Koukouli ◽  
Arjo Segers ◽  
Astrid Manders ◽  
Dimitris Balis ◽  
...  

In this work, we investigate the ability of a data assimilation technique and space-borne observations to quantify and monitor changes in nitrogen oxides (NOx) emissions over Northwestern Greece for the summers of 2018 and 2019. In this region, four lignite-burning power plants are located. The data assimilation technique, based on the Ensemble Kalman Filter method, is employed to combine space-borne atmospheric observations from the high spatial resolution Sentinel-5 Precursor (S5P) Tropospheric Monitoring Instrument (TROPOMI) and simulations using the LOTOS-EUROS Chemical Transport model. The Copernicus Atmosphere Monitoring Service-Regional European emissions (CAMS-REG, version 4.2) inventory based on the year 2015 is used as the a priori emissions in the simulations. Surface measurements of nitrogen dioxide (NO2) from air quality stations operating in the region are compared with the model surface NO2 output using either the a priori (base run) or the a posteriori (assimilated run) NOx emissions. Relative to the a priori emissions, the assimilation suggests a strong decrease in concentrations for the station located near the largest power plant, by 80% in 2019 and by 67% in 2018. Concerning the estimated annual a posteriori NOx emissions, it was found that, for the pixels hosting the two largest power plants, the assimilated run results in emissions decreased by ~40–50% for 2018 compared to 2015, whereas a larger decrease, of ~70% for both power plants, was found for 2019, after assimilating the space-born observations. For the same power plants, the European Pollutant Release and Transfer Register (E-PRTR) reports decreased emissions in 2018 and 2019 compared to 2015 (−35% and −38% in 2018, −62% and −72% in 2019), in good agreement with the estimated emissions. We further compare the a posteriori emissions to the reported energy production of the power plants during the summer of 2018 and 2019. Mean decreases of about −35% and−63% in NOx emissions are estimated for the two larger power plants in summer of 2018 and 2019, respectively, which are supported by similar decreases in the reported energy production of the power plants (~−30% and −70%, respectively).


Sign in / Sign up

Export Citation Format

Share Document