scholarly journals Satellite data validation: a parametrization of the natural variability of atmospheric mixing ratios

2021 ◽  
Author(s):  
Alexandra Laeng ◽  
Thomas von Clarmann ◽  
Quentin Errera ◽  
Udo Grabowski ◽  
Shawn Honomichl

Abstract. High-resolution model data are used to estimate typical variabilities of mixing ratios of trace species as a function of spatial and temporal distance. These estimates can be used to explain that part of the differences between observations made with different observing systems that are due to less than perfect collocation of the measurements. The variability values are described by a two-parameter regression function. A reparametrization of the variabilities values as function of latitudinal graidents is proposed, and season-independence of linear approximation of such function is demonstrated.

Ocean Science ◽  
2012 ◽  
Vol 8 (1) ◽  
pp. 19-35 ◽  
Author(s):  
F. K. Hunt ◽  
R. Tailleux ◽  
J. J.-M. Hirschi

Abstract. Tests of the new Rossby wave theories that have been developed over the past decade to account for discrepancies between theoretical wave speeds and those observed by satellite altimeters have focused primarily on the surface signature of such waves. It appears, however, that the surface signature of the waves acts only as a rather weak constraint, and that information on the vertical structure of the waves is required to better discriminate between competing theories. Due to the lack of 3-D observations, this paper uses high-resolution model data to construct realistic vertical structures of Rossby waves and compares these to structures predicted by theory. The meridional velocity of a section at 24° S in the Atlantic Ocean is pre-processed using the Radon transform to select the dominant westward signal. Normalized profiles are then constructed using three complementary methods based respectively on: (1) averaging vertical profiles of velocity, (2) diagnosing the amplitude of the Radon transform of the westward propagating signal at different depths, and (3) EOF analysis. These profiles are compared to profiles calculated using four different Rossby wave theories: standard linear theory (SLT), SLT plus mean flow, SLT plus topographic effects, and theory including mean flow and topographic effects. Our results support the classical theoretical assumption that westward propagating signals have a well-defined vertical modal structure associated with a phase speed independent of depth, in contrast with the conclusions of a recent study using the same model but for different locations in the North Atlantic. The model structures are in general surface intensified, with a sign reversal at depth in some regions, notably occurring at shallower depths in the East Atlantic. SLT provides a good fit to the model structures in the top 300 m, but grossly overestimates the sign reversal at depth. The addition of mean flow slightly improves the latter issue, but is too surface intensified. SLT plus topography rectifies the overestimation of the sign reversal, but overestimates the amplitude of the structure for much of the layer above the sign reversal. Combining the effects of mean flow and topography provided the best fit for the mean model profiles, although small errors at the surface and mid-depths are carried over from the individual effects of mean flow and topography respectively. Across the section the best fitting theory varies between SLT plus topography and topography with mean flow, with, in general, SLT plus topography performing better in the east where the sign reversal is less pronounced. None of the theories could accurately reproduce the deeper sign reversals in the west. All theories performed badly at the boundaries. The generalization of this method to other latitudes, oceans, models and baroclinic modes would provide greater insight into the variability in the ocean, while better observational data would allow verification of the model findings.


2011 ◽  
Vol 8 (3) ◽  
pp. 1089-1129
Author(s):  
F. K. Hunt ◽  
R. Tailleux ◽  
J. J.-M. Hirschi

Abstract. Tests of the new Rossby wave theories that have been developed over the past decade to account for discrepancies between theoretical wave speeds and those observed by satellite altimeters have focused primarily on the surface signature of such waves. It appears, however, that the surface signature of the waves acts only as a rather weak constraint, and that information on the vertical structure of the waves is required to better discriminate between competing theories. Due to the lack of 3-D observations, this paper uses high-resolution model data to construct realistic vertical structures of Rossby waves and compares these to structures predicted by theory. The meridional velocity of a section at 24° S in the Atlantic Ocean is pre-processed using the Radon transform to select the dominant westward signal. Normalized profiles are then constructed using three complementary methods based respectively on: (1) averaging vertical profiles of velocity, (2) diagnosing the amplitude of the Radon transform of the westward propagating signal at different depths, and (3) EOF analysis. These profiles are compared to profiles calculated using four different Rossby wave theories: standard linear theory (SLT), SLT plus mean flow, SLT plus topographic effects, and theory including mean flow and topographic effects. The model data supports the classical theoretical assumption that westward propagating signals have a well-defined vertical modal structure associated with a phase speed independent of depth, in contrast with the conclusions of a recent study using the same model. The model structures were surface intensified, with a sign reversal at depth in some regions, notably occurring at shallower depths in the East Atlantic. SLT provides a good fit to the model structures in the top 300 m, but grossly overestimates the sign reversal at depth. The addition of mean flow slightly improves the latter issue, but is too surface intensified. SLT plus topography rectifies the overestimation of the sign reversal, but overestimates the amplitude of the structure for much of the layer above the sign reversal. Combining the effects of mean flow and topography provided the best fit for the mean model profiles, although small errors at the surface and mid-depths are carried over from the individual effects of mean flow and topography, respectively. Across the section the best fitting theory varies between SLT plus topography and topography with mean flow, with, in general, SLT plus topography performing better in the east where the sign reversal is less pronounced. None of the theories could accurately reproduce the deeper sign reversals in the west. All theories performed badly at the boundaries. The generalization of this method to other latitudes, oceans, models and baroclinic modes would provide greater insight into the variability in the ocean, while better observational data would allow verification of the model findings.


Atmosphere ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 376 ◽  
Author(s):  
Chengwu Zhao ◽  
Junqiang Song ◽  
Hongze Leng ◽  
Juan Zhao

Precise center-detection of tropical cyclones (TCs) is critical for dynamic analysis in high resolution model data. The existence of both smaller scale perturbations and larger scale circulations could reduce the accuracy of center positioning. In this study, an objective center-finding algorithm is developed based on a two-dimensional Fourier filter and a vorticity centroid algorithm. This proposed algorithm is able to automatically adjust its parameters according to the scale of the target vortex instead of using artificially prescribed parameters in previous research. What’s more, this new algorithm has been optimized and validated by a hundred idealized vortexes with different sizes and small-scale perturbations. A high-resolution simulation of Typhoon Soudelor (2015) was used to evaluate the performance of the new algorithm, and the proposed objective center-finding algorithm was found able to detect a precise and reliable center.


2012 ◽  
Vol 27 (1-2) ◽  
pp. 133-148 ◽  
Author(s):  
Jesse Dorrestijn ◽  
Daan T. Crommelin ◽  
A. Pier. Siebesma ◽  
Harm J. J. Jonker

2020 ◽  
Vol 125 (7) ◽  
Author(s):  
Igor L. Bashmachnikov ◽  
Igor E. Kozlov ◽  
Larisa A. Petrenko ◽  
Natalia I. Glok ◽  
Claudia Wekerle

2013 ◽  
Vol 140 (681) ◽  
pp. 1189-1197 ◽  
Author(s):  
J. A. Waller ◽  
S. L. Dance ◽  
A. S. Lawless ◽  
N. K. Nichols ◽  
J. R. Eyre

2002 ◽  
Vol 5 (3) ◽  
pp. 212-212 ◽  
Author(s):  
U. Tiede ◽  
A. Pommert ◽  
B. Pflesser ◽  
E. Richter ◽  
M. Riemer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document