scholarly journals OMI Collection 4: establishing a 17-year long series of detrended L1b data

2022 ◽  
Author(s):  
Quintus Kleipool ◽  
Nico Rozemeijer ◽  
Mirna van Hoek ◽  
Jonatan Leloux ◽  
Erwin Loots ◽  
...  

Abstract. The Ozone Monitoring Instrument (OMI) was launched on July 15, 2004, with an expected mission lifetime of 5 years. After more than 17 years in orbit the instrument is still functioning satisfactorily, and in principle can continue doing so for many years more. In order to continue the datasets acquired by OMI and the Microwave Limb Sounder the mission was extended up to at least 2023. Actions have been taken to ensure the proper functioning of the OMI instrument operations, the data processing, and the calibration monitoring system until the eventual end of the mission. For the data processing a new level 0 to level 1b data processor was built based on the recent developments for Tropospheric Monitoring Instrument (TROPOMI). With corrections for the degradation of the instrument now included, it is feasible to generate a new data collection to supersede the current collection 3 data products. This paper describes the differences between the collection 3 and collection 4 data. It will be shown that the collection 4 L1b data is a clear improvement with respect to the previous collections. By correcting for the gentle optical and electronic aging that has occurred over the past 17 years, OMI's ability to make trend-quality ozone measurements has further improved.

2006 ◽  
Vol 44 (5) ◽  
pp. 1199-1208 ◽  
Author(s):  
P.F. Levelt ◽  
E. Hilsenrath ◽  
G.W. Leppelmeier ◽  
G.H.J. van den Oord ◽  
P.K. Bhartia ◽  
...  

2017 ◽  
Vol 10 (11) ◽  
pp. 4121-4134 ◽  
Author(s):  
Peter R. Colarco ◽  
Santiago Gassó ◽  
Changwoo Ahn ◽  
Virginie Buchard ◽  
Arlindo M. da Silva ◽  
...  

Abstract. We provide an analysis of the commonly used Ozone Monitoring Instrument (OMI) aerosol index (AI) product for qualitative detection of the presence and loading of absorbing aerosols. In our analysis, simulated top-of-atmosphere (TOA) radiances are produced at the OMI footprints from a model atmosphere and aerosol profile provided by the NASA Goddard Earth Observing System (GEOS-5) Modern-Era Retrospective Analysis for Research and Applications aerosol reanalysis (MERRAero). Having established the credibility of the MERRAero simulation of the OMI AI in a previous paper we describe updates in the approach and aerosol optical property assumptions. The OMI TOA radiances are computed in cloud-free conditions from the MERRAero atmospheric state, and the AI is calculated. The simulated TOA radiances are fed to the OMI near-UV aerosol retrieval algorithms (known as OMAERUV) is compared to the MERRAero calculated AI. Two main sources of discrepancy are discussed: one pertaining to the OMI algorithm assumptions of the surface pressure, which are generally different from what the actual surface pressure of an observation is, and the other related to simplifying assumptions in the molecular atmosphere radiative transfer used in the OMI algorithms. Surface pressure assumptions lead to systematic biases in the OMAERUV AI, particularly over the oceans. Simplifications in the molecular radiative transfer lead to biases particularly in regions of topography intermediate to surface pressures of 600 and 1013.25 hPa. Generally, the errors in the OMI AI due to these considerations are less than 0.2 in magnitude, though larger errors are possible, particularly over land. We recommend that future versions of the OMI algorithms use surface pressures from readily available atmospheric analyses combined with high-spatial-resolution topographic maps and include more surface pressure nodal points in their radiative transfer lookup tables.


2017 ◽  
Vol 10 (12) ◽  
pp. 4979-4994
Author(s):  
Germar Bernhard ◽  
Irina Petropavlovskikh ◽  
Bernhard Mayer

Abstract. A new method is presented to determine vertical ozone profiles from measurements of spectral global (direct Sun plus upper hemisphere) irradiance in the ultraviolet. The method is similar to the widely used Umkehr technique, which inverts measurements of zenith sky radiance. The procedure was applied to measurements of a high-resolution spectroradiometer installed near the centre of the Greenland ice sheet. Retrieved profiles were validated with balloon-sonde observations and ozone profiles from the space-borne Microwave Limb Sounder (MLS). Depending on altitude, the bias between retrieval results presented in this paper and MLS observations ranges between −5 and +3 %. The magnitude of this bias is comparable, if not smaller, to values reported in the literature for the standard Dobson Umkehr method. Total ozone columns (TOCs) calculated from the retrieved profiles agree to within 0.7±2.0 % (±1σ) with TOCs measured by the Ozone Monitoring Instrument on board the Aura satellite. The new method is called the Global-Umkehr method.


Author(s):  
Pieternel F. Levelt ◽  
Gijsbertus van den Oord ◽  
Marcel Dobber ◽  
Ruud Dirksen ◽  
Glen Jaross ◽  
...  

2011 ◽  
Vol 11 (3) ◽  
pp. 7291-7319 ◽  
Author(s):  
H. Jethva ◽  
O. Torres

Abstract. We provide satellite-based evidence of the spectral dependence of absorption in biomass burning aerosols over South America using near-UV measurements made by Ozone Monitoring Instrument (OMI) during 2005–2007. Currently, OMAERUV aerosol algorithm characterizes carbonaceous aerosol as "gray" aerosol, meaning no wavelength dependence in aerosol absorption. With this assumption, OMI-derived aerosol optical depth (AOD) is found to be over-estimated significantly compared to that of AERONET at several sites during intense biomass burning events (August–September). The assumption on height of aerosols and other parameters seem to be reasonable and unable to explain large discrepancy in the retrieval. The specific ground-based studies have revealed strong spectral dependence in aerosol absorption in the near-UV region that indicates the presence of organic carbon. A new set of OMI aerosol retrieval with assumed wavelength-dependent aerosol absorption in the near-UV region (Absorption Angstrom Exponent λ−2.5 to −3.0) provided much improved retrieval of AOD with significantly reduced bias. Also, the new retrieval of single-scattering albedo is in better agreement with those of AERONET within the uncertainties (Δω=±0.03). The new smoke aerosol model was also found to be valid over the biomass burning region of central Africa and northern India. Together with suggesting vast improvement in the retrieval of aerosol properties from OMI, present study demonstrates the near-UV capabilities of OMI in separating aerosols containing organics from pure black carbon through OMI-AERONET integrated measurements.


Author(s):  
Kévin Lamy ◽  
Marion Ranaivombola ◽  
Hassan Bencherif ◽  
Thierry Portafaix ◽  
Mohamed Abdoulwahab Toihir ◽  
...  

As part of the UV-Indien project, a station for measuring ultraviolet radiation and the cloud fraction was installed in December 2019 in Moroni, the capital of the Comoros, situated on the west coast of the island of Ngazidja. A ground measurement campaign was also carried out on 12 January 2020 during the ascent of Mount Karthala, located in the center of the island of Ngazidja. In addition, satellite estimates (Ozone Monitoring Instrument and TROPOspheric Monitoring Instrument) and model outputs (Copernicus Atmospheric Monitoring Service and Tropospheric Ultraviolet Model) were combined for this same region. On the one hand, these different measurements and estimates make it possible to quantify, evaluate, and monitor the health risk linked to exposure to ultraviolet radiation in this region and, on the other, they help to understand how cloud cover influences the variability of UV-radiation on the ground. The measurements of the Ozone Monitoring Instrument onboard the EOS-AURA satellite, being the longest timeseries of ultraviolet measurements available in this region, make it possible to quantify the meteorological conditions in Moroni and to show that more than 80% of the ultraviolet indices are classified as high, and that 60% of these are classified as extreme. The cloud cover measured in Moroni by an All Sky Camera was used to distinguish between the cases of UV index measurements taken under clear or cloudy sky conditions. The ground-based measurements thus made it possible to describe the variability of the diurnal cycle of the UV index and the influence of cloud cover on this parameter. They also permitted the satellite measurements and the results of the simulations to be validated. In clear sky conditions, a relative difference of between 6 and 11% was obtained between satellite or model estimates and ground measurements. The ultraviolet index measurement campaign on Mount Karthala showed maximum one-minute standard erythemal doses at 0.3 J·m−2 and very high daily cumulative erythemal doses, at more than 80 J·m−2. These very high levels are also observed throughout the year and all skin phototypes can exceed the daily erythemal dose threshold, at more than 20 J·m−2.


2016 ◽  
Author(s):  
Can Li ◽  
Nickolay A. Krotkov ◽  
Simon Carn ◽  
Yan Zhang ◽  
Robert J. D. Spurr ◽  
...  

Abstract. Since the fall of 2004, the Ozone Monitoring Instrument (OMI) has been providing global monitoring of volcanic SO2 emissions, helping to understand their climate impacts and to mitigate aviation hazards. Here we introduce a new generation OMI volcanic SO2 dataset based on a principal component analysis (PCA) retrieval technique. To reduce retrieval noise and artifacts as seen in the current operational linear fit (LF) algorithm, the new algorithm, OMSO2VOLCANO, uses characteristic features extracted directly from OMI radiances in the spectral fitting, thereby helping to minimize interferences from various geophysical processes (e.g., O3 absorption) and measurement details (e.g., wavelength shift). To solve the problem of low bias for large SO2 total columns in the LF product, the OMSO2VOLCANO algorithm employs a table lookup approach to estimate SO2 Jacobians (i.e., the instrument sensitivity to a perturbation in the SO2 column amount) and iteratively adjusts the spectral fitting window to exclude shorter wavelengths where the SO2 absorption signals are saturated. To first order, the effects of clouds and aerosols are accounted for using a simple Lambertian equivalent reflectivity approach. As with the LF algorithm, OMSO2VOLCANO provides total column retrievals based on a set of pre-defined SO2 profiles from the lower troposphere to the lower stratosphere, including a new profile peaked at 13 km for plumes in the upper troposphere. Examples given in this study indicate that the new dataset shows significant improvement over the LF product, with at least 50 % reduction in retrieval noise over the remote Pacific. For large eruptions such as Kasatochi in 2008 (~ 1700 kt total SO2) and Sierra Negra in 2005 (> 1100 DU maximal SO2), OMSO2VOLCANO generally agrees well with other algorithms that also utilize the full spectral content of satellite measurements, while the LF algorithm tends to underestimate SO2. We also demonstrate that, despite the coarser spatial and spectral resolution of the Suomi National Polar-orbiting Partnership (Suomi-NPP) Ozone Mapping and Profiler Suite (OMPS) instrument, application of the new PCA algorithm to OMPS data produces highly consistent retrievals between OMI and OMPS. The new PCA algorithm is therefore capable of continuing the volcanic SO2 data record well into the future using current and future hyperspectral UV satellite instruments.


2010 ◽  
Vol 10 (23) ◽  
pp. 11501-11517 ◽  
Author(s):  
G. Curci ◽  
P. I. Palmer ◽  
T. P. Kurosu ◽  
K. Chance ◽  
G. Visconti

Abstract. Emission of non-methane Volatile Organic Compounds (VOCs) to the atmosphere stems from biogenic and human activities, and their estimation is difficult because of the many and not fully understood processes involved. In order to narrow down the uncertainty related to VOC emissions, which negatively reflects on our ability to simulate the atmospheric composition, we exploit satellite observations of formaldehyde (HCHO), an ubiquitous oxidation product of most VOCs, focusing on Europe. HCHO column observations from the Ozone Monitoring Instrument (OMI) reveal a marked seasonal cycle with a summer maximum and winter minimum. In summer, the oxidation of methane and other long-lived VOCs supply a slowly varying background HCHO column, while HCHO variability is dominated by most reactive VOC, primarily biogenic isoprene followed in importance by biogenic terpenes and anthropogenic VOCs. The chemistry-transport model CHIMERE qualitatively reproduces the temporal and spatial features of the observed HCHO column, but display regional biases which are attributed mainly to incorrect biogenic VOC emissions, calculated with the Model of Emissions of Gases and Aerosol from Nature (MEGAN) algorithm. These "bottom-up" or a-priori emissions are corrected through a Bayesian inversion of the OMI HCHO observations. Resulting "top-down" or a-posteriori isoprene emissions are lower than "bottom-up" by 40% over the Balkans and by 20% over Southern Germany, and higher by 20% over Iberian Peninsula, Greece and Italy. We conclude that OMI satellite observations of HCHO can provide a quantitative "top-down" constraint on the European "bottom-up" VOC inventories.


Sign in / Sign up

Export Citation Format

Share Document