scholarly journals Field test of available methods to measure remotely SO<sub>x</sub> and NO<sub>x</sub> emissions from ships

2014 ◽  
Vol 7 (8) ◽  
pp. 2597-2613 ◽  
Author(s):  
J. M. Balzani Lööv ◽  
B. Alfoldy ◽  
L. F. L. Gast ◽  
J. Hjorth ◽  
F. Lagler ◽  
...  

Abstract. Methods for the determination of ship fuel sulphur content and NOx emission factors based on remote measurements have been compared in the harbour of Rotterdam and compared to direct stack emission measurements on the ferry Stena Hollandica. The methods were selected based on a review of the available literature on ship emission measurements. They were either optical (LIDAR, Differential Optical Absorption Spectroscopy (DOAS), UV camera), combined with model-based estimates of fuel consumption, or based on the so called "sniffer" principle, where SO2 or NOx emission factors are determined from simultaneous measurement of the increase of CO2 and SO2 or NOx concentrations in the plume of the ship compared to the background. The measurements were performed from stations at land, from a boat and from a helicopter. Mobile measurement platforms were found to have important advantages compared to the land-based ones because they allow optimizing the sampling conditions and sampling from ships on the open sea. Although optical methods can provide reliable results it was found that at the state of the art level, the "sniffer" approach is the most convenient technique for determining both SO2 and NOx emission factors remotely. The average random error on the determination of SO2 emission factors comparing two identical instrumental set-ups was 6%. However, it was found that apparently minor differences in the instrumental characteristics, such as response time, could cause significant differences between the emission factors determined. Direct stack measurements showed that about 14% of the fuel sulphur content was not emitted as SO2. This was supported by the remote measurements and is in agreement with the results of other field studies.

2013 ◽  
Vol 6 (6) ◽  
pp. 9735-9782 ◽  
Author(s):  
J. M. Balzani Lööv ◽  
B. Alfoldy ◽  
J. Beecken ◽  
N. Berg ◽  
A. J. C. Berkhout ◽  
...  

Abstract. Methods for the determination of ship fuel sulphur content and NOx emission factors from remote measurements have been compared in the harbour of Rotterdam and compared to direct stack emission measurements on the ferry Stena Hollandica. The methods were selected based on a review of the available literature on ship emission measurements. They were either optical (LIDAR, DOAS, UV camera), combined with model based estimates of fuel consumption, or based on the so called "sniffer" principle, where SO2 or NOx emission factors are determined from simultaneous measurement of the increase of CO2 and SO2 or NOx concentrations in the plume of the ship compared to the background. The measurements were performed from stations at land, from a boat, and from a helicopter. Mobile measurement platforms were found to have important advantages compared to the landbased ones because they allow to optimize the sampling conditions and to sample from ships on the open sea. Although optical methods can provide reliable results, it was found that at the state of the art, the "sniffer" approach is the most convenient technique for determining both SO2 and NOx emission factors remotely. The average random error on the determination of SO2 emission factors comparing two identical instrumental set-ups was 6%. However, it was found that apparently minor differences in the instrumental characteristics, such as response time, could cause significant differences between the emission factors determined. Direct stack measurements showed that about 14% of the fuel sulphur content was not emitted as SO2. This was supported by the remote measurements and is in agreement with the results of other field studies.


2016 ◽  
Vol 3 (3) ◽  
pp. 28-34
Author(s):  
V. Volkogon ◽  
I. Korotka

Aim. To determine physiologically expedient rates of mineral nitrogen in winter rye production on sod-podzol- ic soils based on the orientation of the processes of biological nitrogen transformation in the plants rhizosphere. Methods. Field studies, gas chromatography determination of potential nitrogen fi xation activity and potential emissions of N 2 O. Results. The results obtained have demonstrated that the rates of mineral nitrogen, not ex- ceeding 60 kg/ha, can be considered physiologically expedient for winter rye production on sod-podzolic soils. Under the application of microbial preparation Diazobakteryn, there is a higher physiological need of plants for nitrogen, which allows increasing the rates of nitrogen fertilizers up to 90 kg/ha. Conclusions. The orienta- tion of the processes of biological nitrogen transformation in the root zone of plants is a reliable indicator of determining the appropriateness of nitrogen fertilization of crops.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1993
Author(s):  
Fernando Pérez-Sanz ◽  
Miriam Riquelme-Pérez ◽  
Enrique Martínez-Barba ◽  
Jesús de la Peña-Moral ◽  
Alejandro Salazar Nicolás ◽  
...  

Liver transplantation is the only curative treatment option in patients diagnosed with end-stage liver disease. The low availability of organs demands an accurate selection procedure based on histological analysis, in order to evaluate the allograft. This assessment, traditionally carried out by a pathologist, is not exempt from subjectivity. In this sense, new tools based on machine learning and artificial vision are continuously being developed for the analysis of medical images of different typologies. Accordingly, in this work, we develop a computer vision-based application for the fast and automatic objective quantification of macrovesicular steatosis in histopathological liver section slides stained with Sudan stain. For this purpose, digital microscopy images were used to obtain thousands of feature vectors based on the RGB and CIE L*a*b* pixel values. These vectors, under a supervised process, were labelled as fat vacuole or non-fat vacuole, and a set of classifiers based on different algorithms were trained, accordingly. The results obtained showed an overall high accuracy for all classifiers (>0.99) with a sensitivity between 0.844 and 1, together with a specificity >0.99. In relation to their speed when classifying images, KNN and Naïve Bayes were substantially faster than other classification algorithms. Sudan stain is a convenient technique for evaluating ME in pre-transplant liver biopsies, providing reliable contrast and facilitating fast and accurate quantification through the machine learning algorithms tested.


2009 ◽  
Vol 9 (11) ◽  
pp. 3641-3662 ◽  
Author(s):  
D. Chen ◽  
B. Zhou ◽  
S. Beirle ◽  
L. M. Chen ◽  
T. Wagner

Abstract. Zenith-sky scattered sunlight observations using differential optical absorption spectroscopy (DOAS) technique were carried out in Shanghai, China (31.3° N, 121.5° E) since December 2006. At this polluted urban site, the measurements provided NO2 total columns in the daytime. Here, we present a new method to extract time series of tropospheric vertical column densities (VCDs) of NO2 from these observations. The derived tropospheric NO2 VCDs are important quantities for the estimation of emissions and for the validation of satellite observations. Our method makes use of assumptions on the relative NO2 height profiles and the diurnal variation of stratospheric NO2 VCDs. The main error sources arise from the uncertainties in the estimated stratospheric slant column densities (SCDs) and the determination of tropospheric NO2 air mass factor (AMF). For a polluted site like Shanghai, the accuracy of our method is conservatively estimated to be <25% for solar zenith angle (SZA) lower than 70°. From simultaneously performed long-path DOAS measurements, the NO2 surface concentrations at the same site were observed and the corresponding tropospheric NO2 VCDs were estimated using the assumed seasonal NO2 profiles in the planetary boundary layer (PBL). By making a comparison between the tropospheric NO2 VCDs from zenith-sky and long-path DOAS measurements, it is found that the former provides more realistic information about total tropospheric pollution than the latter, so it's more suitable for satellite data validation. A comparison between the tropospheric NO2 VCDs from ground-based zenith-sky measurements and SCIAMACHY was also made. Satellite validation for a strongly polluted area is highly needed, but exhibits also a great challenge. Our comparison shows good agreement, considering in particular the different spatial resolutions between the two measurements. Remaining systematic deviations are most probably related to the uncertainties of satellite data caused by the assumptions on aerosol properties as well as the layer heights of aerosols and NO2.


2015 ◽  
Vol 8 (1) ◽  
pp. 43-55 ◽  
Author(s):  
I. Ježek ◽  
L. Drinovec ◽  
L. Ferrero ◽  
M. Carriero ◽  
G. Močnik

Abstract. We have used two methods for measuring emission factors (EFs) in real driving conditions on five cars in a controlled environment: the stationary method, where the investigated vehicle drives by the stationary measurement platform and the composition of the plume is measured, and the chasing method, where a mobile measurement platform drives behind the investigated vehicle. We measured EFs of black carbon and particle number concentration. The stationary method was tested for repeatability at different speeds and on a slope. The chasing method was tested on a test track and compared to the portable emission measurement system. We further developed the data processing algorithm for both methods, trying to improve consistency, determine the plume duration, limit the background influence and facilitate automatic processing of measurements. The comparison of emission factors determined by the two methods showed good agreement. EFs of a single car measured with either method have a specific distribution with a characteristic value and a long tail of super emissions. Measuring EFs at different speeds or slopes did not significantly influence the EFs of different cars; hence, we propose a new description of vehicle emissions that is not related to kinematic or engine parameters, and we rather describe the vehicle EF with a characteristic value and a super emission tail.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 290
Author(s):  
Yannic Ramaye ◽  
Marta Dabrio ◽  
Gert Roebben ◽  
Vikram Kestens

Zeta potential is frequently used to examine the colloidal stability of particles and macromolecules in liquids. Recently, it has been suggested that zeta potential can also play an important role for grouping and read-across of nanoforms in a regulatory context. Although the measurement of zeta potential is well established, only little information is reported on key metrological principles such as validation and measurement uncertainties. This contribution presents the results of an in-house validation of the commonly used electrophoretic light scattering (ELS) and the relatively new particle tracking analysis (PTA) methods. The performance characteristics were assessed by analyzing silica and polystyrene reference materials. The ELS and PTA methods are robust and have particle mass working ranges of 0.003 mg/kg to 30 g/kg and 0.03 mg/kg to 1.5 mg/kg, respectively. Despite different measurement principles, both methods exhibit similar uncertainties for repeatability (2%), intermediate precision (3%) and trueness (4%). These results confirm that the developed methods can accurately measure the zeta potential of silica and polystyrene particles and can be transferred to other laboratories that analyze similar types of samples. If direct implementation is impossible, the elaborated methodologies may serve as a guide to help laboratories validating their own methods.


Sign in / Sign up

Export Citation Format

Share Document