scholarly journals Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances

2015 ◽  
Vol 8 (7) ◽  
pp. 2663-2683 ◽  
Author(s):  
M. D. Fielding ◽  
J. C. Chiu ◽  
R. J. Hogan ◽  
G. Feingold ◽  
E. Eloranta ◽  
...  

Abstract. Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar reflectivity. We present a new method to simultaneously retrieve cloud and drizzle vertical profiles in drizzling boundary-layer clouds using surface-based observations of radar reflectivity, lidar attenuated backscatter, and zenith radiances under conditions when precipitation does not reach the surface. Specifically, the vertical structure of droplet size and water content of both cloud and drizzle is characterised throughout the cloud. An ensemble optimal estimation approach provides full error statistics given the uncertainty in the observations. To evaluate the new method, we first perform retrievals using synthetic measurements from large-eddy simulation snapshots of cumulus under stratocumulus, where cloud water path is retrieved with an error of 31 g m−2. The method also performs well in non-drizzling clouds where no assumption of the cloud profile is required. We then apply the method to observations of marine stratocumulus obtained during the Atmospheric Radiation Measurement MAGIC deployment in the Northeast Pacific. Here, retrieved cloud water path agrees well with independent three-channel microwave radiometer retrievals, with a root mean square difference of 10–20 g m−2.

2015 ◽  
Vol 8 (2) ◽  
pp. 1833-1889
Author(s):  
M. D. Fielding ◽  
J. C. Chiu ◽  
R. J. Hogan ◽  
G. Feingold ◽  
E. Eloranta ◽  
...  

Abstract. Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar reflectivity. We present a new method to simultaneously retrieve cloud and drizzle vertical profiles in drizzling boundary-layer cloud using surface-based observations of radar reflectivity, lidar attenuated backscatter, and zenith radiances. Specifically, the vertical structure of droplet size and water content of both cloud and drizzle is characterised throughout the cloud. An ensemble optimal estimation approach provides full error statistics given the uncertainty in the observations. To evaluate the new method, we first perform retrievals using synthetic measurements from large-eddy simulation snapshots of cumulus under stratocumulus, where cloud water path is retrieved with an error of 31 g m−2. The method also performs well in non-drizzling clouds where no assumption of the cloud profile is required. We then apply the method to observations of marine stratocumulus obtained during the Atmospheric Radiation Measurement MAGIC deployment in the northeast Pacific. Here, retrieved cloud water path agrees well with independent 3-channel microwave radiometer retrievals, with a root mean square difference of 10–20 g m−2.


1995 ◽  
Vol 34 (2) ◽  
pp. 471-481 ◽  
Author(s):  
Y. Fujiyoshi ◽  
Y. Ishizaka ◽  
T. Takeda ◽  
T. Hayasaka ◽  
M. Tanaka

Abstract Special observations were made over the southwest island area of the East China Sea from 12 to 27 January 1991 as part of the World Climate Research Program in Japan (WENPEX—Western North Pacific Cloud–Radiation Experiment). Two aircraft were used to determine the air truth of the total vertical liquid water path (LWP) using a microwave radiometer. One airplane was fitted with a 37-GHz radiometer and flew above planetary boundary layer clouds. The other flew inside the clouds with a cloud droplet spectrometer. These aircraft flew simultaneously along the same flight path when planetary boundary layer clouds were formed over the warm sea during an outbreak of cold air. The result of the air truth of the LWPradiometer indicates that the 37-GHZ microwave radiometer gives an estimation of the LWP accurate to 100 mg cm−2. The shortwave cloud albedo was related to the LWPradiometer. The albedo increases with the LWP, independent of cloud type, when measured just above the cloud tops. The measured albedo is nearly the same as the calculated albedo when the LWPradiometer is larger than 60 mg cm−2 but much smaller than the calculated albedo when the LWPradiometer is less than 40 mg cm−2. Cloud-top irregularity is suggested to be the primary cause of this discrepancy. The degree of inhomogeneity of the horizontal distribution of liquid water appears to be correlated with the amount of precipitable water in the planetary boundary layer.


2019 ◽  
Vol 12 (9) ◽  
pp. 3939-3954
Author(s):  
Frederik Kurzrock ◽  
Hannah Nguyen ◽  
Jerome Sauer ◽  
Fabrice Chane Ming ◽  
Sylvain Cros ◽  
...  

Abstract. Numerical weather prediction models tend to underestimate cloud presence and therefore often overestimate global horizontal irradiance (GHI). The assimilation of cloud water path (CWP) retrievals from geostationary satellites using an ensemble Kalman filter (EnKF) led to improved short-term GHI forecasts of the Weather Research and Forecasting (WRF) model in midlatitudes in case studies. An evaluation of the method under tropical conditions and a quantification of this improvement for study periods of more than a few days are still missing. This paper focuses on the assimilation of CWP retrievals in three phases (ice, supercooled, and liquid) in a 6-hourly cycling procedure and on the impact of this method on short-term forecasts of GHI for Réunion Island, a tropical island in the southwest Indian Ocean. The multilayer gridded cloud properties of NASA Langley's Satellite ClOud and Radiation Property retrieval System (SatCORPS) are assimilated using the EnKF of the Data Assimilation Research Testbed (DART) Manhattan release (revision 12002) and the advanced research WRF (ARW) v3.9.1.1. The ability of the method to improve cloud analyses and GHI forecasts is demonstrated, and a comparison using independent radiosoundings shows a reduction of specific humidity bias in the WRF analyses, especially in the low and middle troposphere. Ground-based GHI observations at 12 sites on Réunion Island are used to quantify the impact of CWP DA. Over a total of 44 d during austral summertime, when averaged over all sites, CWP data assimilation has a positive impact on GHI forecasts for all lead times between 5 and 14 h. Root mean square error and mean absolute error are reduced by 4 % and 3 %, respectively.


2020 ◽  
Vol 13 (5) ◽  
pp. 2363-2379 ◽  
Author(s):  
Katia Lamer ◽  
Pavlos Kollias ◽  
Alessandro Battaglia ◽  
Simon Preval

Abstract. Ground-based radar observations show that, over the eastern North Atlantic, 50 % of warm marine boundary layer (WMBL) hydrometeors occur below 1.2 km and have reflectivities of < −17 dBZ, thus making their detection from space susceptible to the extent of surface clutter and radar sensitivity. Surface clutter limits the ability of the CloudSat cloud profiling radar (CPR) to observe the true cloud base in ∼52 % of the cloudy columns it detects and true virga base in ∼80 %, meaning the CloudSat CPR often provides an incomplete view of even the clouds it does detect. Using forward simulations, we determine that a 250 m resolution radar would most accurately capture the boundaries of WMBL clouds and precipitation; that being said, because of sensitivity limitations, such a radar would suffer from cloud cover biases similar to those of the CloudSat CPR. Observations and forward simulations indicate that the CloudSat CPR fails to detect 29 %–43 % of the cloudy columns detected by ground-based sensors. Out of all configurations tested, the 7 dB more sensitive EarthCARE CPR performs best (only missing 9.0 % of cloudy columns) indicating that improving radar sensitivity is more important than decreasing the vertical extent of surface clutter for measuring cloud cover. However, because 50 % of WMBL systems are thinner than 400 m, they tend to be artificially stretched by long sensitive radar pulses, hence the EarthCARE CPR overestimation of cloud top height and hydrometeor fraction. Thus, it is recommended that the next generation of space-borne radars targeting WMBL science should operate interlaced pulse modes including both a highly sensitive long-pulse mode and a less sensitive but clutter-limiting short-pulse mode.


Sign in / Sign up

Export Citation Format

Share Document