scholarly journals Fine-scale dynamics of fragmented aurora-like emissions

2021 ◽  
Vol 39 (6) ◽  
pp. 975-989
Author(s):  
Daniel K. Whiter ◽  
Hanna Sundberg ◽  
Betty S. Lanchester ◽  
Joshua Dreyer ◽  
Noora Partamies ◽  
...  

Abstract. Fragmented aurora-like emissions (FAEs) are small (few kilometres) optical structures which have been observed close to the poleward boundary of the aurora from the high-latitude location of Svalbard (magnetic latitude 75.3 ∘N). The FAEs are only visible in certain emissions, and their shape has no magnetic-field-aligned component, suggesting that they are not caused by energetic particle precipitation and are, therefore, not aurora in the normal sense of the word. The FAEs sometimes form wave-like structures parallel to an auroral arc, with regular spacing between each FAE. They drift at a constant speed and exhibit internal dynamics moving at a faster speed than the envelope structure. The formation mechanism of FAEs is currently unknown. We present an analysis of high-resolution optical observations of FAEs made during two separate events. Based on their appearance and dynamics, we make the assumption that the FAEs are a signature of a dispersive wave in the lower E-region ionosphere, co-located with enhanced electron and ion temperatures detected by incoherent scatter radar. Their drift speed (group speed) is found to be 580–700 m s−1, and the speed of their internal dynamics (phase speed) is found to be 2200–2500 m s−1, both for an assumed altitude of 100 km. The speeds are similar for both events which are observed during different auroral conditions. We consider two possible waves which could produce the FAEs, i.e. electrostatic ion cyclotron waves (EIC) and Farley–Buneman waves, and find that the observations could be consistent with either wave under certain assumptions. In the case of EIC waves, the FAEs must be located at an altitude above about 140 km, and our measured speeds scaled accordingly. In the case of Farley–Buneman waves a very strong electric field of about 365 mV m−1 is required to produce the observed speeds of the FAEs; such a strong electric field may be a requirement for FAEs to occur.

2021 ◽  
Author(s):  
Daniel K. Whiter ◽  
Hanna Dahlgren ◽  
Betty S. Lanchester ◽  
Joshua Dreyer ◽  
Noora Partamies ◽  
...  

Abstract. Fragmented Aurora-like Emissions (FAEs) are small (few km) optical structures which have been observed close to the poleward boundary of the aurora from the high-latitude location of Svalbard (magnetic latitude 75.3 ° N). The FAEs are only visible in certain emissions and their shape has no magnetic-field aligned component, suggesting that they are not caused by energetic particle precipitation and are therefore not aurora in the normal sense of the word. The FAEs sometimes form wave-like structures parallel to an auroral arc, with regular spacing between each FAE. They drift at a constant speed and exhibit internal dynamics moving at a faster speed than the envelope structure. The formation mechanism of FAEs is currently unknown. We present an analysis of high-resolution optical observations of FAEs made during two separate events. Based on their appearance and dynamics we make the assumption that the FAEs are a signature of a dispersive wave in the lower E-region ionosphere, co-located with enhanced electron and ion temperatures detected by incoherent scatter radar. Their drift speed (group speed) is found to be 580–700 m s−1 and the speed of their internal dynamics (phase speed) is found to be 2200–2500 m s−1, both for an assumed altitude of 100 km. The speeds are similar for both events which are observed during different auroral conditions. We consider two possible waves which could produce the FAEs, electrostatic ion cyclotron waves and Farley-Buneman waves, and find that the observations could be consistent with either wave under certain assumptions. In the case of EIC waves the FAEs must be located at an altitude above about 140 km, and our measured speeds scaled accordingly. In the case of Farley-Buneman waves a very strong electric field of about 365 mV m−1 is required to produce the observed speeds of the FAEs; such a strong electric field may be a requirement for FAEs to occur.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Valerie Domcke ◽  
Yohei Ema ◽  
Kyohei Mukaida

Abstract We point out an enhancement of the pair production rate of charged fermions in a strong electric field in the presence of time dependent classical axion-like background field, which we call axion assisted Schwinger effect. While the standard Schwinger production rate is proportional to $$ \exp \left(-\pi \left({m}^2+{p}_T^2\right)/E\right) $$ exp − π m 2 + p T 2 / E , with m and pT denoting the fermion mass and its momentum transverse to the electric field E, the axion assisted Schwinger effect can be enhanced at large momenta to exp(−πm2/E). The origin of this enhancement is a coupling between the fermion spin and its momentum, induced by the axion velocity. As a non-trivial validation of our result, we show its invariance under field redefinitions associated with a chiral rotation and successfully reproduce the chiral anomaly equation in the presence of helical electric and magnetic fields. We comment on implications of this result for axion cosmology, focussing on axion inflation and axion dark matter detection.


2012 ◽  
Vol 109 (8) ◽  
Author(s):  
A. V. Gurevich ◽  
G. A. Mesyats ◽  
K. P. Zybin ◽  
M. I. Yalandin ◽  
A. G. Reutova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document