scholarly journals Enhanced Weathering and related element fluxes – a cropland mesocosm approach

2020 ◽  
Vol 17 (1) ◽  
pp. 103-119 ◽  
Author(s):  
Thorben Amann ◽  
Jens Hartmann ◽  
Eric Struyf ◽  
Wagner de Oliveira Garcia ◽  
Elke K. Fischer ◽  
...  

Abstract. The weathering of silicates is a major control on atmospheric CO2 at geologic timescales. It was proposed to enhance this process to actively remove CO2 from the atmosphere. While there are some studies that propose and theoretically analyze the application of rock powder to agricultural land, results from field experiments are still scarce. In order to evaluate the efficiency and side effects of Enhanced Weathering (EW), a mesocosm experiment was set up and agricultural soil from Belgium was amended with olivine-bearing dunite ground to two different grain sizes, while distinguishing setups with and without crops. Based on measurements of Mg, Si, pH, and DIC, the additional weathering effect of olivine could be confirmed. Calculated weathering rates are up to 3 orders of magnitude lower than found in other studies. The calculated CO2 consumption by weathering based on the outlet water of the mesocosm systems was low with 2.3–4.9 tCO2km-2a-1 if compared with previous theoretical estimates. Suspected causes were the removal or dilution of Mg as a weathering product by processes like adsorption, mineralization, plant uptake, evapotranspiration, and/or preferential flow, not specifically addressed in previous EW experiments for CO2 consumption. The observation that Mg concentrations in the upper soil layers were about 1 order of magnitude higher than in the outlet water indicates that a careful tracking of weathering indicators like Mg in the field is essential for a precise estimate of the CO2 consumption potential of EW, specifically under global deployment scenarios with a high diversity of ecosystem settings. Porewater Mg∕Si molar ratios suggest that dissolved Si is reprecipitating, forming a cation-depleted Si layer on the reactive mineral surface of freshly ground rocks. The release of potentially harmful trace elements is an acknowledged side effect of EW. Primarily Ni and Cr are elevated in the soil solution, while Ni concentrations exceed the limits of drinking water quality. The use of olivine, rich in Ni and Cr, is not recommended, and alternative rock sources are suggested for the application.

2018 ◽  
Author(s):  
Thorben Amann ◽  
Jens Hartmann ◽  
Eric Struyf ◽  
Wagner de Oliveira Garcia ◽  
Elke K. Fischer ◽  
...  

Abstract. The weathering of silicates is a major control on atmospheric CO2 at geologic time scales. It was proposed to enhance this process to actively remove CO2 from the atmosphere. While there are some studies that propose and theoretically analyze the application of rock powder on agricultural land, results from field experiments are still scarce. In order to evaluate the efficiency and side effects of Enhanced Weathering, a mesocosm experiment was set up and agricultural soil from Belgium was amended with olivine-bearing dunite ground to two different grain sizes, while distinguishing setups with and without crops. Based on measurements of Mg, Si, pH, and DIC, the additional weathering effect of olivine could be confirmed. Calculated weathering rates are up to three orders of magnitude lower than found in other studies. The calculated CO2 consumption by weathering was comparably low with 2.3 to 4.9 CO2 t km−2 a−1. One identified cause was preferential flow leading to a low water-rock interaction time for a significant water volume in the setup, not addressed in previous Enhanced Weathering experiments for CO2 consumption. Correction for preferential flow leads to fluxes about a magnitude higher, confirming that this process and surface runoff in the field must be included in assessments for the CO2 consumption potential of Enhanced Weathering in general. Pore water Mg / Si molar ratios suggest that dissolved Si from the added minerals stays in the system over the observation period, because a cation depleted Si layer forms on the reactive mineral surface of freshly ground rocks. This layer has not reached equilibrium thickness within the first two years. The release of potentially harmful trace elements is an acknowledged side effect of Enhanced Weathering. Primarily Ni and Cr are elevated in soil solution, while Ni concentrations exceed the limits of drinking water quality. The use of olivine, rich in Ni and Cr, is not recommend and alternative rock sources are suggested for the application.


2014 ◽  
Vol 10 (1) ◽  
pp. 1-15
Author(s):  
Z. Láng

The possible effect of shaker harvest on root damage of 10-year-old cherry trees was studied on a simple tree structure model. The model was composed of elastic trunk and rigid main roots, the ends of which were connected to the surrounding soil via springs and dumping elements. Equations were set up to be able to calculate the relation between shaking height on the trunk and strain in the roots. To get the data for root break and their elongation at different shaking heights on the trunk, laboratory and field experiments were carried out on cherry trees and on their roots. Having evaluated the measured and calculated data it could be concluded that root damage is to be expected even at 3.6% strain and the risk of it increases with increased trunk amplitudes, i.e.with the decrease of shaking heightat smaller stem diameters (i.e. in younger plantation), andif the unbalanced mass of the shaker machine is too large for the given tree size.


2011 ◽  
Vol 48 (No. 1) ◽  
pp. 20-26
Author(s):  
M. Birkás ◽  
T. Szalai ◽  
C. Gyuricza ◽  
M. Gecse ◽  
K. Bordás

This research was instigated by the fact that during the last decade annually repeated shallow disk tillage on the same field became frequent practice in Hungary. In order to study the changes of soil condition associated with disk tillage and to assess it is consequences, long-term tillage field experiments with different levels of nutrients were set up in 1991 (A) and in 1994 (B) on Chromic Luvisol at Gödöllö. The effects of disk tillage (D) and disk tillage combined with loosening (LD) on soil condition, on yield of maize and winter wheat, and on weed infestation were examined. The evaluation of soil condition measured by cone index and bulk density indicated that use of disking annually resulted in a dense soil layer below the disking depth (diskpan-compaction). It was found, that soil condition deteriorated by diskpan-compaction decreased the yield of maize significantly by 20 and 42% (w/w), and that of wheat by 13 and 15% (w/w) when compared to soils with no diskpan-compaction. Averaged over seven years, and three fertilizer levels, the cover % of the total, grass and perennial weeds on loosened soils were 73, 69 and 65% of soils contained diskpan-compaction.


Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1064
Author(s):  
Shuiwang Duan ◽  
Kamaljit Banger ◽  
Gurpal S. Toor

Florida has a long history of phosphate-mining, but less is known about how mining affects nutrient exports to coastal waters. Here, we investigated the transport of inorganic and organic forms of nitrogen (N) and phosphorus (P) over 23 sampling events during a wet season (June–September) in primary tributaries and mainstem of Alafia River that drains into the Tampa Bay Estuary. Results showed that a tributary draining the largest phosphate-mining area (South Prong) had less flashy peaks, and nutrients were more evenly exported relative to an adjacent tributary (North Prong), highlighting the effectiveness of the mining reclamation on stream hydrology. Tributaries draining > 10% phosphate-mining area had significantly higher specific conductance (SC), pH, dissolved reactive P (DRP), and total P (TP) than tributaries without phosphate-mining. Further, mean SC, pH, and particulate reactive P were positively correlated with the percent phosphate-mining area. As phosphate-mining occurred in the upper part of the watershed, the SC, pH, DRP, and TP concentrations increased downstream along the mainstem. For example, the upper watershed contributed 91% of TP compared to 59% water discharge to the Alafia River. In contrast to P, the highest concentrations of total N (TN), especially nitrate + nitrite (NOx–N) occurred in agricultural tributaries, where the mean NOx–N was positively correlated with the percent agricultural land. Dissolved organic N was dominant in all streamwaters and showed minor variability across sites. As a result of N depletion and P enrichment, the phosphate-mining tributaries had significantly lower molar ratios of TN:TP and NOx–N:DRP than other tributaries. Bi-weekly monitoring data showed consistent increases in SC and DRP and a decrease in NOx–N at the South Prong tributary (highest phosphate-mining area) throughout the wet season, and different responses of dissolved inorganic nutrients (negative) and particulate nutrients (positive) to water discharge. We conclude that (1) watersheds with active and reclaimed phosphate-mining and agriculture lands are important sources of streamwater P and N, respectively, and (2) elevated P inputs from the phosphate-mining areas altered the N:P ratios in streamwaters of the Alafia River.


2009 ◽  
Vol 66 (7) ◽  
pp. 2107-2115 ◽  
Author(s):  
Cegeon J. Chan ◽  
R. Alan Plumb

Abstract In simple GCMs, the time scale associated with the persistence of one particular phase of the model’s leading mode of variability can often be unrealistically large. In a particularly extreme example, the time scale in the Polvani–Kushner model is about an order of magnitude larger than the observed atmosphere. From the fluctuation–dissipation theorem, one implication of these simple models is that responses are exaggerated, since such setups are overly sensitive to any external forcing. Although the model’s equilibrium temperature is set up to represent perpetual Southern Hemisphere winter solstice, it is found that the tropospheric eddy-driven jet has a preference for two distinct regions: the subtropics and midlatitudes. Because of this bimodality, the jet persists in one region for thousands of days before “switching” to another. As a result, the time scale associated with the intrinsic variability is unrealistic. In this paper, the authors systematically vary the model’s tropospheric equilibrium temperature profile, one configuration being identical to that of Polvani and Kushner. Modest changes to the tropospheric state to either side of the parameter space removed the bimodality in the zonal-mean zonal jet’s spatial distribution and significantly reduced the time scale associated with the model’s internal mode. Consequently, the tropospheric response to the same stratospheric forcing is significantly weaker than in the Polvani and Kushner case.


1972 ◽  
Vol 2 (1) ◽  
pp. 33-36 ◽  
Author(s):  
W. L. F. Brinkmann

Abstract: Spherical ceramic bulbs were set up as weekly water-loss integrators on a clearing and below a 2 year-old Cecropia-commumty at Km 18 of the Manaus-Itacoatiara Road. The instruments worked well in distinguishing the particular responses of individual sites to the impact of atmospheric agents as solar radiation, air temperature, air humidity and wind. Water-loss was primarily dependent on the order of magnitude of the weekly total of solar radiation and the presence or lack of a standing crop. Already a scarce secondary growth will reduce the weekly amount of water lost to the atmosphere considerably. Shelter-wood, however, considering the crop specific demands if introduced to tropical agriculture would provide favourable conditions as far as the impact of atmospheric controls on the tropical environment are concerned.


Water ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 110
Author(s):  
Raphael Schneider ◽  
Simon Stisen ◽  
Anker Lajer Højberg

About half of the Danish agricultural land is drained artificially. Those drains, mostly in the form of tile drains, have a significant effect on the hydrological cycle. Consequently, the drainage system must also be represented in hydrological models that are used to simulate, for example, the transport and retention of chemicals. However, representation of drainage in large-scale hydrological models is challenging due to scale issues, lacking data on the distribution of drain infrastructure, and lacking drain flow observations. This calls for more indirect methods to inform such models. Here, we investigate the hypothesis that drain flow leaves a signal in streamflow signatures, as it represents a distinct streamflow generation process. Streamflow signatures are indices characterizing hydrological behaviour based on the hydrograph. Using machine learning regressors, we show that there is a correlation between signatures of simulated streamflow and simulated drain fraction. Based on these insights, signatures relevant to drain flow are incorporated in hydrological model calibration. A distributed coupled groundwater–surface water model of the Norsminde catchment, Denmark (145 km2) is set up. Calibration scenarios are defined with different objective functions; either using conventional stream flow metrics only, or a combination with hydrological signatures. We then evaluate the results from the different scenarios in terms of how well the models reproduce observed drain flow and spatial drainage patterns. Overall, the simulation of drain in the models is satisfactory. However, it remains challenging to find a direct link between signatures and an improvement in representation of drainage. This is likely attributable to model structural issues and lacking flexibility in model parameterization.


2021 ◽  
Author(s):  
Dihui Chen ◽  
Yanjie Shen ◽  
Juntao Wang ◽  
Yang Gao ◽  
Huiwang Gao ◽  
...  

Abstract. To study sea-derived gaseous amines, ammonia, and primary particulate aminium ions in the marine atmospheres of China's marginal seas, an onboard URG-9000D Ambient Ion Monitor-Ion chromatography (AIM-IC, Thermo Fisher) was set up on the front deck of the R/V Dongfanghong 3 to semi-continuously measure the spatiotemporal variations in the concentrations of atmospheric trimethylamine (TMAgas), dimethylamine (DMAgas), and ammonia (NH3gas) along with their particulate matter (PM2.5) counterparts. In this study, we differentiated marine emissions of the gas species originating from continental transport using data obtained from December 9 to 22, 2019 during the cruise over the Yellow and Bohai Seas, facilitated by additional measurements collected at a coastal site near the Yellow Sea during summer 2019. The data obtained during the cruise and the coastal site demonstrated that the observed TMAgas and protonated trimethylamine (TMAH+) in PM2.5 over the Yellow and Bohai Seas overwhelmingly originated from marine sources. During the cruise, there was no significant correlation (P > 0.05) between the simultaneously measured TMAH+ and TMAgas concentrations. Additionally, the concentrations of TMAH+ in the marine atmosphere varied around 0.28 ± 0.18 μg m−3 (average  ±  standard deviation), with several episodic hourly average values exceeding 1 μg m−3, which were approximately one order of magnitude larger than those of TMAgas (approximately 0.031 ± 0.009 μg m−3). Moreover, there was a significant negative correlation (P < 0.01) between the concentrations of TMAH+ and NH4+ in PM2.5 during the cruise. Therefore, the observed TMAH+ in PM2.5 was overwhelmingly derived from primary sea-spray aerosols. Using the TMAgas and TMAH+ in PM2.5 as tracers for sea-derived basic gases and sea-spray particulate aminium ions, the values of non-sea-derived DMAgas and NH3gas, as well as non-sea-spray particulate DMAH+ in PM2.5, were estimated, and the estimated average values of each species contributed to 16 %, 34 %, and 65 % of the observed average concentrations, respectively. Uncertainties remained in the estimations as TMAH+ may decompose into smaller molecules in seawater to varying extents. The non-sea-derived gases and non-sea-spray particulate DMAH+ likely originated from long-range transport from the upwind continents, according to the recorded offshore winds and increased concentrations of SO42− and NH4+ in PM2.5. The lack of a detectable increase in the particulate DMAH+, NH4+, and SO42− concentrations in several SO2 plumes did not support the secondary formation of particulate DMAH+ in the marine atmosphere.


2020 ◽  
Author(s):  
D Steinke ◽  
TWA Braukmann ◽  
L Manerus ◽  
A Woodhouse ◽  
V Elbrecht

AbstractThe Malaise trap has gained popularity for assessing diverse terrestrial arthropod communities because it collects large samples with modest effort. A number of factors that influence collection efficiency, placement being one of them. For instance, when designing larger biotic surveys using arrays of Malaise traps we need to know the optimal distance between individual traps that maximises observable species richness and community composition. We examined the influence of spacing between Malaise traps by metabarcoding samples from two field experiments at a site in Waterloo, Ontario, Canada. For one experiment, we used two trap pairs deployed at weekly increasing distance (3m increments from 3 to 27 m). The second experiment involved a total of 10 traps set up in a row at 3m distance intervals for three consecutive weeks.Results show that community similarity of samples decreases over distance between traps. The amount of species shared between trap pairs shows drops considerably at about 15m trap-to-trap distance. This change can be observed across all major taxonomic groups and for two different habitat types (grassland and forest). Large numbers of OTUs found only once within samples cause rather large dissimilarity between distance pairs even at close proximity. This could be caused by a large number of transient species from adjacent habitat which arrive at the trap through passive transport, as well as capture of rare taxa, which end up in different traps by chance.


2015 ◽  
Vol 95 (8) ◽  
pp. 1607-1612 ◽  
Author(s):  
E.S. Mekhova ◽  
P.Y. Dgebuadze ◽  
V.N. Mikheev ◽  
T.A. Britayev

Previous experiments with the comatulid Himerometra robustipinna (Carpenter, 1881) demonstrated intensive host-to-host migration processes for almost all symbiotic species both within host aggregations and among hosts separated by several metres. The aim of this study was to check the ability of symbionts to complete long-distance migrations, by means of two in situ experiments which depopulated the crinoid host. Two different sets of field experiments were set up: exposure of depopulated crinoids (set 1) on stony ‘islands’ isolated from native crinoid assemblages by sandy substrate, and (set 2) in cages suspended in the water column. Hosts from set 1 were exposed for 1, 2, 3 and 4 weeks to assess whether substrate has an influence on the symbionts' long-distance migrations. In set 2 cages were exposed for 10–11 days, aiming to check whether symbionts were able to disperse through the water column with currents. These experiments allow the conclusion that post-settled symbionts can actively migrate among their hosts. Symbionts are able to reach their hosts by employing two different ‘transport corridors’, by drifting or swimming in water column, and by moving on the bottom. Comparison of experimental results allows the division of symbionts into two conventional groups according to the dispersal ability of their post-settled stages: (1) species able to complete long-distance migrations, (2) species unable to migrate or having limited dispersal ability. The finding of the free-living shrimp Periclimenes diversipes Kemp, 1922 in set 2 raises the question about the factors that affect such a high degree of specialization of crinoid assemblages.


Sign in / Sign up

Export Citation Format

Share Document