scholarly journals Bacteriohopanetetrol-<i>x</i>: constraining its application as a lipid biomarker for marine anammox using the water column oxygen gradient of the Benguela upwelling system

2022 ◽  
Vol 19 (1) ◽  
pp. 201-221
Author(s):  
Zoë R. van Kemenade ◽  
Laura Villanueva ◽  
Ellen C. Hopmans ◽  
Peter Kraal ◽  
Harry J. Witte ◽  
...  

Abstract. Interpreting lipid biomarkers in the sediment archive requires a good understanding of their application and limitations in modern systems. Recently it was discovered that marine bacteria performing anaerobic ammonium oxidation (anammox), belonging to the genus Ca. Scalindua, uniquely synthesize a stereoisomer of bacteriohopanetetrol (“BHT-x”). The ratio of BHT-x over total bacteriohopanetetrol (BHT, ubiquitously synthesized by diverse bacteria) has been suggested as a proxy for water column anoxia. As BHT has been found in sediments over 50 Myr old, BHT-x has the potential to complement and extend the sedimentary biomarker record of marine anammox, conventionally constructed using ladderane lipids. Yet, little is known about the distribution of BHT-x in relation to the distribution of ladderanes and to the genetic evidence of Ca. Scalindua in modern marine systems. Here, we investigate the distribution of BHT-x and the application of the BHT-x ratio in relation to distributions of ladderane intact polar lipids (IPLs), ladderane fatty acids (FAs) and Ca. Scalindua 16S rRNA genes in suspended particulate matter (SPM) from the water column of the Benguela upwelling system (BUS), sampled across a large oxygen gradient. In BUS SPM, high BHT-x abundances were restricted to the oxygen-deficient zone on the continental shelf (at [O2] < 45 µmol L−1, in all but one case). High BHT-x abundances co-occurred with high abundances of the Ca. Scalindua 16S rRNA gene (relative to the total number of bacterial 16S rRNA genes) and ladderane IPLs. At shelf stations with [O2] > 50 µmol L−1, the BHT-x ratio was < 0.04 (in all but one case). In apparent contradiction, ladderane FAs and low abundances of BHT and BHT-x (resulting in BHT-x ratios > 0.04) were also detected in oxygenated offshore waters ([O2] up to 180 µmol L−1), whereas ladderane IPLs were undetected. The index of ladderane lipids with five cyclobutane rings (NL5) correlates with in situ temperature. NL5-derived temperatures suggested that ladderane FAs in the offshore waters were not synthesized in situ but were transported down-slope from warmer shelf waters. Thus, in sedimentary archives of systems with known lateral organic matter transport, such as the BUS, relative BHT and BHT-x abundances should be carefully considered. In such systems, a higher BHT-x ratio may act as a safer threshold for deoxygenation and/or Ca. Scalindua presence: our results and previous studies indicate that a BHT-x ratio of ≥ 0.2 is a robust threshold for oxygen-depleted waters ([O2] < 50 µmol kg−1). In our data, ratios of ≥ 0.2 coincided with Ca. Scalindua 16S rRNA genes in all samples (n=62), except one. Lastly, when investigating in situ anammox, we highlight the importance of using ladderane IPLs over BHT-x and/or ladderane FAs; these latter compounds are more recalcitrant and may derive from transported fossil anammox bacteria remnants.

2021 ◽  
Author(s):  
Zoë Rebecca van Kemenade ◽  
Laura Villanueva ◽  
Ellen C. Hopmans ◽  
Peter Kraal ◽  
Harry J. Witte ◽  
...  

Abstract. Interpreting lipid biomarkers in the sediment archive requires a good understanding of their application and limitations in modern systems. Recently it was discovered that marine bacteria performing anaerobic ammonium oxidation (anammox), belonging to the genus Ca. Scalindua, uniquely synthesize a stereoisomer of bacteriohopanetetrol (‘BHT-x’). The ratio of BHT-x over total bacteriohopanetetrol (BHT; ubiquitously synthesized by diverse bacteria) has been suggested as a proxy for water column anoxia. As BHT has been found in sediments over 50 Myr old, BHT-x has the potential to complement and extend the sedimentary biomarker record of marine anammox, conventionally constructed using ladderane lipids. Yet, little is known about the distribution of BHT-x in relation to the distribution of ladderanes and to the genetic evidence of Ca. Scalindua in modern marine systems. Here, we investigate the distribution of BHT-x and the application of the BHT-x ratio in relation to distributions of intact polar (IPL) ladderane lipids, ladderane fatty acids (FAs) and Ca. Scalindua 16S rRNA genes in suspended particulate matter (SPM) from the water column, sampled across a large oxygen gradient in the Benguela upwelling system (BUS). In BUS SPM, high BHT-x abundances were constrained to the oxygen deficient zone on the continental shelf (at [O2] < 45 µmol L−1, in all but one case). High BHT-x abundances co-occurred with high abundances of the Ca. Scalindua 16S rRNA gene (relative to the total number of bacterial 16S rRNA genes) and ladderane IPLs. At shelf stations with [O2] > 50 µmol L−1, the BHT-x ratio was < 0.04 (in all but one case). In apparent contradiction, ladderane FAs and low abundances of BHT and BHT-x (resulting in BHT-x ratio’s > 0.04) were also detected in oxygenated offshore waters ([O2] up to 180 µmol L−1), whereas ladderane IPLs were undetected. NL5-derived temperatures suggested that ladderane FAs in the offshore waters were not synthesized in situ but derived from warmer shelf waters. Thus, in sedimentary archives of systems with known lateral organic matter transport, such as the BUS, relative BHT and BHT-x abundances should be carefully considered. In such systems, a higher BHT-x ratio may act as a safer threshold for deoxygenation and/or Ca. Scalindua presence: in the BUS, at [O2] > 50 µmol L−1, the BHT-x ratio was < 0.18 at both off -and onshore sites (in all but one case) and a ratio > 0.18 corresponded in all cases (except one) with the presence of Ca. Scalindua 16S rRNA genes. Lastly, when investigating in situ anammox, we highlight the importance of using ladderane IPLs over BHT-x and/or ladderane FAs; these latter compounds are more recalcitrant and may derive from transported fossil anammox bacteria remnants.


2007 ◽  
Vol 73 (14) ◽  
pp. 4648-4657 ◽  
Author(s):  
Dagmar Woebken ◽  
Bernhard M. Fuchs ◽  
Marcel M. M. Kuypers ◽  
Rudolf Amann

ABSTRACT Recent studies have shown that the anaerobic oxidation of ammonium by anammox bacteria plays an important role in catalyzing the loss of nitrogen from marine oxygen minimum zones (OMZ). However, in situ oxygen concentrations of up to 25 μM and ammonium concentrations close to or below the detection limit in the layer of anammox activity are hard to reconcile with the current knowledge of the physiology of anammox bacteria. We therefore investigated samples from the Namibian OMZ by comparative 16S rRNA gene analysis and fluorescence in situ hybridization. Our results showed that “Candidatus Scalindua” spp., the typical marine anammox bacteria, colonized microscopic particles that were likely the remains of either macroscopic marine snow particles or resuspended particles. These particles were slightly but significantly (P < 0.01) enriched in Gammaproteobacteria (11.8% ± 5.0%) compared to the free-water phase (8.1% ± 1.8%). No preference for the attachment to particles could be observed for members of the Alphaproteobacteria and Bacteroidetes, which were abundant (12 to 17%) in both habitats. The alphaproteobacterial SAR11 clade, the Euryarchaeota, and group I Crenarchaeota, were all significantly depleted in particles compared to their presence in the free-water phase (16.5% ± 3.5% versus 2.6% ± 1.7%, 2.7% ± 1.9% versus <1%, and 14.9% ± 4.6% versus 2.2% ± 1.8%, respectively, all P < 0.001). Sequence analysis of the crenarchaeotal 16S rRNA genes showed a 99% sequence identity to the nitrifying “Nitrosopumilus maritimus.” Even though we could not observe conspicuous consortium-like structures of anammox bacteria with particle-enriched bacterioplankton groups, we hypothesize that members of Gammaproteobacteria, Alphaproteobacteria, and Bacteroidetes play a critical role in extending the anammox reaction to nutrient-depleted suboxic water layers in the Namibian upwelling system by creating anoxic, nutrient-enriched microniches.


2005 ◽  
Vol 71 (10) ◽  
pp. 6308-6318 ◽  
Author(s):  
Helen A. Vrionis ◽  
Robert T. Anderson ◽  
Irene Ortiz-Bernad ◽  
Kathleen R. O'Neill ◽  
Charles T. Resch ◽  
...  

ABSTRACT The geochemistry and microbiology of a uranium-contaminated subsurface environment that had undergone two seasons of acetate addition to stimulate microbial U(VI) reduction was examined. There were distinct horizontal and vertical geochemical gradients that could be attributed in large part to the manner in which acetate was distributed in the aquifer, with more reduction of Fe(III) and sulfate occurring at greater depths and closer to the point of acetate injection. Clone libraries of 16S rRNA genes derived from sediments and groundwater indicated an enrichment of sulfate-reducing bacteria in the order Desulfobacterales in sediment and groundwater samples. These samples were collected nearest the injection gallery where microbially reducible Fe(III) oxides were highly depleted, groundwater sulfate concentrations were low, and increases in acid volatile sulfide were observed in the sediment. Further down-gradient, metal-reducing conditions were present as indicated by intermediate Fe(II)/Fe(total) ratios, lower acid volatile sulfide values, and increased abundance of 16S rRNA gene sequences belonging to the dissimilatory Fe(III)- and U(VI)-reducing family Geobacteraceae. Maximal Fe(III) and U(VI) reduction correlated with maximal recovery of Geobacteraceae 16S rRNA gene sequences in both groundwater and sediment; however, the sites at which these maxima occurred were spatially separated within the aquifer. The substantial microbial and geochemical heterogeneity at this site demonstrates that attempts should be made to deliver acetate in a more uniform manner and that closely spaced sampling intervals, horizontally and vertically, in both sediment and groundwater are necessary in order to obtain a more in-depth understanding of microbial processes and the relative contribution of attached and planktonic populations to in situ uranium bioremediation.


2006 ◽  
Vol 72 (10) ◽  
pp. 6687-6692 ◽  
Author(s):  
Sanin Musovic ◽  
Gunnar Oregaard ◽  
Niels Kroer ◽  
Søren J. Sørensen

ABSTRACTThe host range and transfer frequency of an IncP-1 plasmid (pKJK10) among indigenous bacteria in the barley rhizosphere was investigated. A new flow cytometry-based cultivation-independent method for enumeration and sorting of transconjugants for subsequent 16S rRNA gene classification was used. Indigenous transconjugant rhizosphere bacteria were collected by fluorescence-activated cell sorting and identified by cloning and sequencing of 16S rRNA genes from the sorted cells. The host range of the pKJK10 plasmid was exceptionally broad, as it included not only bacteria belonging to the alpha, beta, and gamma subclasses of theProteobacteria, but alsoArthrobactersp., a gram-positive member of theActinobacteria. The transfer frequency (transconjugants per donor) from thePseudomonas putidadonor to the indigenous bacteria was 7.03 × 10−2± 3.84 × 10−2. This is the first direct documentation of conjugal transfer between gram-negative donor and gram-positive recipient bacteria in situ.


2007 ◽  
Vol 53 (1) ◽  
pp. 116-128 ◽  
Author(s):  
Richard Villemur ◽  
Philippe Constant ◽  
Annie Gauthier ◽  
Martine Shareck ◽  
Réjean Beaudet

Strains of Desulfitobacterium hafniense, such as strains PCP-1, DP7, TCE1, and TCP-A, have unusual long 16S ribosomal RNA (rRNA) genes due to an insertion of approximately 100 bp in the 5' region. In this report, we analyzed the 16S rRNA genes of different Desulfitobacterium strains to determine if such an insertion is a common feature of desulfitobacteria. We amplified this region by polymerase chain reaction (PCR) from eight Desulfitobacterium strains (D. hafniense strains PCP-1, DP7, TCP-A, TCE1, and DCB-2; D. dehalogenans; D. chlororespirans; and Desulfitobacterium sp. PCE1) and resolved each PCR product by denaturing gradient gel electrophoresis (DGGE). All strains had from two to seven DGGE- migrating bands, suggesting heterogeneity in their 16S rRNA gene copies. For each strain, the 5' region of the 16S rRNA genes was amplified and a clone library was derived. Clones corresponding to most PCR–DGGE migration bands were isolated. Sequencing of representative clones revealed that the heterogeneity was generated by insertions of 100–200 bp. An insertion was found in at least one copy of the 16S rRNA gene in all examined strains. In total, we found eight different types of insertions (INS1–INS8) that varied from 123 to 193 nt in length. Two-dimensional structural analyses of transcribed sequences predicted that all insertions would form an energetically stable loop. Reverse transcriptase – PCR experiments revealed that most of the observed insertions in the Desulfitobacterium strains were excised from the mature 16S rRNA transcripts. Insertions were not commonly found in bacterial 16S rRNA genes, and having a different insertion in several 16S rRNA gene copies borne by a single bacterial species was rarely observed. The function of these insertions is not known, but their occurrence can have an important impact in deriving 16S rRNA oligonucleotidic fluorescence in situ hybridization probes, as these insertions can be excised from 16S rRNA transcripts.Key words: Desulfitobacterium, 16S ribosomal RNA genes, heterogeneity, gene insertions, fluorescence in situ hybridization.


2009 ◽  
Vol 75 (23) ◽  
pp. 7461-7468 ◽  
Author(s):  
Nicole S. Moin ◽  
Katelyn A. Nelson ◽  
Alexander Bush ◽  
Anne E. Bernhard

ABSTRACT Diversity and abundance of ammonia-oxidizing Betaproteobacteria (β-AOB) and archaea (AOA) were investigated in a New England salt marsh at sites dominated by short or tall Spartina alterniflora (SAS and SAT sites, respectively) or Spartina patens (SP site). AOA amoA gene richness was higher than β-AOB amoA richness at SAT and SP, but AOA and β-AOB richness were similar at SAS. β-AOB amoA clone libraries were composed exclusively of Nitrosospira-like amoA genes. AOA amoA genes at SAT and SP were equally distributed between the water column/sediment and soil/sediment clades, while AOA amoA sequences at SAS were primarily affiliated with the water column/sediment clade. At all three site types, AOA were always more abundant than β-AOB based on quantitative PCR of amoA genes. At some sites, we detected 109 AOA amoA gene copies g of sediment−1. Ratios of AOA to β-AOB varied over 2 orders of magnitude among sites and sampling dates. Nevertheless, abundances of AOA and β-AOB amoA genes were highly correlated. Abundance of 16S rRNA genes affiliated with Nitrosopumilus maritimus, Crenarchaeota group I.1b, and pSL12 were positively correlated with AOA amoA abundance, but ratios of amoA to 16S rRNA genes varied among sites. We also observed a significant effect of pH on AOA abundance and a significant salinity effect on both AOA and β-ΑΟΒ abundance. Our results expand the distribution of AOA to salt marshes, and the high numbers of AOA at some sites suggest that salt marsh sediments serve as an important habitat for AOA.


2021 ◽  
Author(s):  
Peter Braun ◽  
Fee Zimmermann ◽  
Mathias C Walter ◽  
Sonja Mantel ◽  
Karin Aistleitner ◽  
...  

Analysis of 16S ribosomal RNA (rRNA) genes provides a central means of taxonomic classification of bacterial species. Based on presumed sequence identity among species of the Bacillus cereus sensu lato group, the 16S rRNA genes of B. anthracis have been considered unsuitable for diagnosis of the anthrax pathogen. With the recent identification of a single nucleotide polymorphism in some 16S rRNA gene copies, specific identification of B. anthracis becomes feasible. Here, we designed and evaluated a set of in situ-, in vitro- and in silico-assays to assess the yet unknown 16S-state of B. anthracis from different perspectives. Using a combination of digital PCR, fluorescence in situ hybridization, long-read genome sequencing and bioinformatics we were able to detect and quantify a unique 16S rRNA gene allele of B. anthracis (16S-BA-allele). This allele was found in all available B. anthracis genomes and may facilitate differentiation of the pathogen from any close relative. Bioinformatics analysis of 959 B. anthracis genome data-sets inferred that abundances and genomic arrangements of the 16S-BA-allele and the entire rRNA operon copy-numbers differ considerably between strains. Expression ratios of 16S-BA-alleles were proportional to the respective genomic allele copy-numbers. The findings and experimental tools presented here provide detailed insights into the intra- and intergenomic diversity of 16S rRNA genes and may pave the way for improved identification of B. anthracis and other pathogens with diverse rRNA operons.


2005 ◽  
Vol 71 (12) ◽  
pp. 8802-8810 ◽  
Author(s):  
Nancy A. Moran ◽  
Phat Tran ◽  
Nicole M. Gerardo

ABSTRACT Several insect groups have obligate, vertically transmitted bacterial symbionts that provision hosts with nutrients that are limiting in the diet. Some of these bacteria have been shown to descend from ancient infections. Here we show that the large group of related insects including cicadas, leafhoppers, treehoppers, spittlebugs, and planthoppers host a distinct clade of bacterial symbionts. This newly described symbiont lineage belongs to the phylum Bacteroidetes. Analyses of 16S rRNA genes indicate that the symbiont phylogeny is completely congruent with the phylogeny of insect hosts as currently known. These results support the ancient acquisition of a symbiont by a shared ancestor of these insects, dating the original infection to at least 260 million years ago. As visualized in a species of spittlebug (Cercopoidea) and in a species of sharpshooter (Cicadellinae), the symbionts have extraordinarily large cells with an elongate shape, often more than 30 μm in length; in situ hybridizations verify that these correspond to the phylum Bacteroidetes. “Candidatus Sulcia muelleri” is proposed as the name of the new symbiont.


2009 ◽  
Vol 4 (4) ◽  
pp. 558-566 ◽  
Author(s):  
Alexandra Demiri ◽  
Alexandra Meziti ◽  
Sokratis Papaspyrou ◽  
Maria Thessalou-Legaki ◽  
Konstantinos Kormas

AbstractWe investigated the diversity of the bacterial 16S rRNA genes occurring on the abdominal setal tufts and in the emptied midgut of the marine mudshrimp Pestarella tyrrhena (Decapoda: Thalassinidea). There were no dominant phylotypes on the setal tufts. The majority of the phylotypes belonged to the phylum Bacteroidetes, frequently occurring in the water column. The rest of the phylotypes were related to anoxygenic photosynthetic α-Proteobacteria and to Actinobacteria. This bacterial profile seems more of a marine assemblage rather than a specific one suggesting that no specific microbial process can be inferred on the setal tufts. In the emptied midgut, 64 clones were attributed to 16 unique phylotypes with the majority (40.6%) belonging to the γ-Proteobacteria, specifically to the genus Vibrio, a marine group with known symbionts of decapods. The next most abundant group was the ɛ-Proteobacteria (28.1%), with members as likely symbionts related to the processes involving redox reactions occurring in the midgut. In addition, phylotypes related to the Spirochaetes (10.9%) were also present, with relatives capable of symbiosis conducting a nitrite associated metabolism. Entomoplasmatales, Bacteroidetes and Actinobacteria related phylotypes were also found. These results indicate a specific bacterial community dominated by putative symbiotic Bacteria within the P. tyrrhena’s midgut.


2006 ◽  
Vol 73 (1) ◽  
pp. 303-311 ◽  
Author(s):  
Christine M. Anderson ◽  
Margo G. Haygood

ABSTRACT Bacterial symbionts that resembled mollicutes were discovered in the marine bryozoan Watersipora arcuata in the 1980s. In this study, we used PCR and sequencing of 16S rRNA genes, specific fluorescence in situ hybridization, and phylogenetic analysis to determine that the bacterial symbionts of “W. subtorquata” and “W. arcuata” from several locations along the California coast are actually closely related α-Proteobacteria, not mollicutes. We propose the names “Candidatus Endowatersipora palomitas” and “Candidatus Endowatersipora rubus” for the symbionts of “W. subtorquata” and “W. arcuata,” respectively.


Sign in / Sign up

Export Citation Format

Share Document