scholarly journals Change in tropical forest cover of Southeast Asia from 1990 to 2010

2013 ◽  
Vol 10 (8) ◽  
pp. 12625-12653 ◽  
Author(s):  
H.-J. Stibig ◽  
F. Achard ◽  
S. Carboni ◽  
R. Raši ◽  
J. Miettinen

Abstract. The study assesses the extent and trends of forest cover in Southeast Asia for the period 1990–2000–2010 and provides an overview on the main drivers of forest cover change. A systematic sample of 418 sites (10 km × 10 km size) located at the one-degree geographical confluence points and covered with satellite imagery of 30 m resolution is used for the assessment. Techniques of image segmentation and automated classification are combined with visual satellite image interpretation and quality control, involving forestry experts from Southeast Asian countries. The accuracy of our results is assessed through an independent consistency assessment, performed from a subsample of 1572 mapping units and resulting in an overall agreement of > 85% for the general differentiation of forest cover vs. non-forest cover. The total forest cover of Southeast Asia is estimated at 268 Mha in 1990, dropping to 236 Mha in 2010, with annual change rates of 1.75 Mha (~0.67% and 1.45 Mha (~0.59%) for the periods 1990–2000 and 2000–2010, respectively. The vast majority of forest cover loss (~2/3 for 2000–2010) occurred in insular Southeast Asia. Combining the change patterns visible from satellite imagery with the output of an expert consultation on the main drivers of forest change highlights the high pressure on the region's remaining forests. The conversion of forest cover to cash crop plantations (e.g. oil palm) is ranked as the dominant driver of forest change in Southeast Asia, followed by selective logging and the establishment of tree plantations.

2014 ◽  
Vol 11 (2) ◽  
pp. 247-258 ◽  
Author(s):  
H.-J. Stibig ◽  
F. Achard ◽  
S. Carboni ◽  
R. Raši ◽  
J. Miettinen

Abstract. The study assesses the extent and trends of forest cover in Southeast Asia for the periods 1990–2000 and 2000–2010 and provides an overview on the main causes of forest cover change. A systematic sample of 418 sites (10 km × 10 km size) located at the one-degree geographical confluence points and covered with satellite imagery of 30 m resolution is used for the assessment. Techniques of image segmentation and automated classification are combined with visual satellite image interpretation and quality control, involving forestry experts from Southeast Asian countries. The accuracy of our results is assessed through an independent consistency assessment, performed from a subsample of 1572 mapping units and resulting in an overall agreement of >85% for the general differentiation of forest cover versus non-forest cover. The total forest cover of Southeast Asia is estimated at 268 Mha in 1990, dropping to 236 Mha in 2010, with annual change rates of 1.75 Mha (∼0.67%) and 1.45 Mha (∼0.59%) for the periods 1990–2000 and 2000–2010, respectively. The vast majority of forest cover loss (∼2 / 3 for 2000–2010) occurred in insular Southeast Asia. Complementing our quantitative results by indicative information on patterns and on processes of forest change, obtained from the screening of satellite imagery and through expert consultation, respectively, confirms the conversion of forest to cash crops plantations (including oil palm) as the main cause of forest loss in Southeast Asia. Logging and the replacement of natural forests by forest plantations are two further important change processes in the region.


2021 ◽  
Vol 66 (1) ◽  
pp. 175-187
Author(s):  
Duong Phung Thai ◽  
Son Ton

On the basis of using practical methods, satellite image processing methods, the vegetation coverage classification system of the study area, interpretation key for the study area, classification and post-classification pro cessing, this research introduces how to exploit and process multi-temporal satellite images in evaluating the changes of forest area. Landsat 4, 5 TM and Landsat 8 OLI remote sensing image data were used to evaluate the changes in the area of mangrove forests (RNM) in Ca Mau province in the periods of 1988 - 1998, 1998 - 2013, 2013 - 2018, and 1988 - 2018. The results of the image interpretation in 1988, 1998, 2013, 2018 and the overlapping of the above maps show: In the 30-year period from 1988 to 2018, the total area of mangroves in Ca Mau province was decreased by 28% compared to the beginning, from 71,093.3 ha in 1988 reduced to 51,363.5 ha in 2018, decreasing by 19,729.8 ha. The recovery speed of mangroves is 2 times lower than their disappearance speed. Specifically, from 1988 to 2018, mangroves disappeared on an area of 42,534.9 hectares and appeared on the new area of 22,805 hectares, only 12,154.5 hectares of mangroves remained unchanged. The fluctuation of mangrove area in Ca Mau province is related to the process of deforestation to dig shrimp ponds, coastal erosion, the formation of mangroves on new coastal alluvial lands and soil dunes in estuaries, as well as planting new mangroves in inefficient shrimp ponds.


2019 ◽  
Vol 11 (1-2) ◽  
pp. 217-225
Author(s):  
MM Rahman ◽  
MAT Pramanik ◽  
MI Islam ◽  
S Razia

Mangroves have been planting in the coastal belt of Bangladesh to protect the inhabitants of the coastal areas from cyclones and storm surges. Nijhum Dwip is located at the southern part of Hatiya Island. Most part of the island has been planted with the mangroves in the 1970s and 1980s; while parts of the mangroves have been deforested during the past few decades. The objectives of this research were to delineate and quantify the changes in the extent of mangroves in the island. The Landsat data of 1989, 2001, 2010 and 2018 have been utilized in the study. Three major land covers, namely forest, water and other land have been interpreted and delineated by using on-screen digitizing. The quantity of mangrove forest loss in the island is estimated as 1,024 ha, while 395 ha were afforested during 1989-2018. In the decadal change analysis, it was revealed that net forest cover change was higher in 2000s compared to other two decades and it was -425 ha. The result of the study is helpful to understand the extent and pattern of forest conversion in the island and to halt further forest loss and conserve the remaining forest. J. Environ. Sci. & Natural Resources, 11(1-2): 217-225 2018


2018 ◽  
Vol 50 (2) ◽  
pp. 222 ◽  
Author(s):  
Sanjiwana Arjasakusuma ◽  
Uji Astrono Pribadi ◽  
Gilang Aria Seta

The accurate information of forest cover change is important to measure the amount of carbon release and sink. The newly-available remote sensing based products and method such as Daichi Forest/Non-Forest (FNF), Global Forest Change (GFC) datasets and Semi-automatic Claslite systems offers the benefit to derive these information in a quick and simple manner. We measured the accuracy by constructing area-proportion error matrix from 388 random sample points and assessed the consistency analysis by looking at the spatial pattern of deforestation and regrowth from built-up area, roads, and rivers from 2010 – 2015 in Katingan district, Central Kalimantan. Accuracy assessment showed that those 3 datasets indicate low to medium accuracy level in which the highest accuracy was achieved by Claslite who produced 71 % ± 5 % of overall accuracy. The consistency analysis provides a similar spatial pattern of deforestation and regrowth measured from the road, river, and built-up area though their distance sensitivity are different one to another. 


2021 ◽  
Author(s):  
David Lopez-Carr ◽  
Sadie Jane Ryan ◽  
Matthew Clark

Latin America and the Caribbean (LAC) contain more tropical high-biodiversity forest than the remaining areas of the planet combined, yet experienced more than a third of global deforestation during the first decade of the 21st century. While drivers of forest change occur at multiple scales, we examined forest change at the municipal and national scales integrated with global processes such as capital, commodity, and labor flows. We modeled multi-scale socioeconomic, demographic, and environmental drivers of local forest cover change. Consistent with LAC’s global leadership in soy and beef exports, primarily to China, Russia, the US, and the EU, national-level beef and soy production were the primary land use drivers of decreased forest cover. National level GDPs, migrant worker remittances, and foreign investment, along with municipal-level temperature and area, were also significantly related to reduced forest cover. This challenges forest transition frameworks, which theorize that rising GDP and intensified agricultural production should be increasingly associated with forest regrowth. Instead, LAC forest change was linked to local, national, and global demographic, dietary and economic transitions, resulting in massive net forest cover loss. This suggests an urgent need to reconcile forest conservation with mounting global demand for animal protein.


Sign in / Sign up

Export Citation Format

Share Document