scholarly journals The Arctic Ocean marine carbon cycle: evaluation of air-sea CO<sub>2</sub> exchanges, ocean acidification impacts and potential feedbacks

2009 ◽  
Vol 6 (4) ◽  
pp. 6695-6747 ◽  
Author(s):  
N. R. Bates ◽  
J. T. Mathis

Abstract. At present, although seasonal sea-ice cover mitigates atmosphere-ocean gas exchange, the Arctic Ocean takes up carbon dioxide (CO2) on the order of −65 to −175 Tg C year−1, contributing 5–14% to the global balance of CO2 sinks and sources. Because of this, the Arctic Ocean is an important influence on the global carbon cycle, with the marine carbon cycle and atmosphere-ocean CO2 exchanges sensitive to Arctic Ocean and global climate change feedbacks. In the near-term, further sea-ice loss and increases in phytoplankton growth rates are expected to increase the uptake of CO2 by Arctic surface waters, although mitigated somewhat by surface warming in the Arctic. Thus, the capacity of the Arctic Ocean to uptake CO2 is expected to alter in response to environmental changes driven largely by climate. These changes are likely to continue to modify the physics, biogeochemistry, and ecology of the Arctic Ocean in ways that are not yet fully understood. In surface waters, sea-ice melt, river runoff, cooling and uptake of CO2 through air-sea gas exchange combine to decrease the calcium carbonate (CaCO3) mineral saturation states (Ω) of seawater that is counteracted by seasonal phytoplankton primary production (PP). Biological processes drive divergent trajectories for Ω in surface and subsurface waters of Arctic shelves with subsurface water experiencing undersaturation with respect to aragonite and calcite. Thus, in response to increased sea-ice loss, warming and enhanced phytoplankton PP, the benthic ecosystem of the Arctic shelves are expected to be negatively impacted by the biological amplification of ocean acidification. This in turn reduces the ability of many species to produce CaCO3 shells or tests with profound implications for Arctic marine ecosystems.

2009 ◽  
Vol 6 (11) ◽  
pp. 2433-2459 ◽  
Author(s):  
N. R. Bates ◽  
J. T. Mathis

Abstract. At present, although seasonal sea-ice cover mitigates atmosphere-ocean gas exchange, the Arctic Ocean takes up carbon dioxide (CO2) on the order of −66 to −199 Tg C year−1 (1012 g C), contributing 5–14% to the global balance of CO2 sinks and sources. Because of this, the Arctic Ocean has an important influence on the global carbon cycle, with the marine carbon cycle and atmosphere-ocean CO2 exchanges sensitive to Arctic Ocean and global climate change feedbacks. In the near-term, further sea-ice loss and increases in phytoplankton growth rates are expected to increase the uptake of CO2 by Arctic Ocean surface waters, although mitigated somewhat by surface warming in the Arctic. Thus, the capacity of the Arctic Ocean to uptake CO2 is expected to alter in response to environmental changes driven largely by climate. These changes are likely to continue to modify the physics, biogeochemistry, and ecology of the Arctic Ocean in ways that are not yet fully understood. In surface waters, sea-ice melt, river runoff, cooling and uptake of CO2 through air-sea gas exchange combine to decrease the calcium carbonate (CaCO3) mineral saturation states (Ω) of seawater while seasonal phytoplankton primary production (PP) mitigates this effect. Biological amplification of ocean acidification effects in subsurface waters, due to the remineralization of organic matter, is likely to reduce the ability of many species to produce CaCO3 shells or tests with profound implications for Arctic marine ecosystems


Science ◽  
2020 ◽  
Vol 369 (6500) ◽  
pp. 198-202 ◽  
Author(s):  
K. M. Lewis ◽  
G. L. van Dijken ◽  
K. R. Arrigo

Historically, sea ice loss in the Arctic Ocean has promoted increased phytoplankton primary production because of the greater open water area and a longer growing season. However, debate remains about whether primary production will continue to rise should sea ice decline further. Using an ocean color algorithm parameterized for the Arctic Ocean, we show that primary production increased by 57% between 1998 and 2018. Surprisingly, whereas increases were due to widespread sea ice loss during the first decade, the subsequent rise in primary production was driven primarily by increased phytoplankton biomass, which was likely sustained by an influx of new nutrients. This suggests a future Arctic Ocean that can support higher trophic-level production and additional carbon export.


2020 ◽  
Author(s):  
Georgi Laukert ◽  
Dorothea Bauch ◽  
Ilka Peeken ◽  
Thomas Krumpen ◽  
Kirstin Werner ◽  
...  

&lt;p&gt;The lifetime and thickness of Arctic sea ice have markedly decreased in the recent past. This affects Arctic marine ecosystems and the biological pump, given that sea ice acts as platform and transport medium of marine and atmospheric nutrients. At the same time sea ice reduces light penetration to the Arctic Ocean and restricts ocean/atmosphere exchange. In order to understand the ongoing changes and their implications, reconstructions of source regions and drift trajectories of Arctic sea ice are imperative. Automated ice tracking approaches based on satellite-derived sea-ice motion products (e.g. ICETrack) currently perform well in dense ice fields, but provide limited information at the ice edge or in poorly ice-covered areas. Radiogenic neodymium (Nd) isotopes (&amp;#949;&lt;sub&gt;Nd&lt;/sub&gt;) have the potential to serve as a chemical tracer of sea-ice provenance and thus may provide information beyond what can be expected from satellite-based assessments. This potential results from pronounced &amp;#949;&lt;sub&gt;Nd&lt;/sub&gt; differences between the distinct marine and riverine sources, which feed the surface waters of the different sea-ice formation regions. We present the first dissolved (&lt; 0.45 &amp;#181;m) Nd isotope and concentration data obtained from optically clean Arctic first- and multi-year sea ice (ice cores) collected from different ice floes across the Fram Strait during the RV POLARSTERN cruise PS85 in 2014. Our data confirm the preservation of the seawater &amp;#949;&lt;sub&gt;Nd&lt;/sub&gt;signatures in sea ice despite low Nd concentrations (on average ~ 6 pmol/kg) resulting from efficient brine rejection. The large range in &amp;#949;&lt;sub&gt;Nd&lt;/sub&gt; signatures (~ -10 to -30) mirrors that of surface waters in various parts of the Arctic Ocean, indicating that differences between ice floes but also between various sections in an individual ice core reflect the origin and evolution of the sea ice over time. Most ice cores have &amp;#949;&lt;sub&gt;Nd&lt;/sub&gt; signatures of around -10, suggesting that the sea ice was formed in well-mixed waters in the central Arctic Ocean and transported directly to the Fram Strait via the Transpolar Drift. Some ice cores, however, also revealed highly unradiogenic signatures (&amp;#949;&lt;sub&gt;Nd&lt;/sub&gt; &lt; ~ -15) in their youngest (bottom) sections, which we attribute to incorporation of meltwater from Greenland into newly grown sea ice layers. Our new approach facilitates the reconstruction of the origin and spatiotemporal evolution of isolated sea-ice floes in the future Arctic.&lt;/p&gt;


2017 ◽  
Author(s):  
Jun Ono ◽  
Hiroaki Tatebe ◽  
Yoshiki Komuro ◽  
Masato I. Nodzu ◽  
Masayoshi Ishii

Abstract. To assess the skill of predictions of the seasonal-to-interannual detrended sea ice extent in the Arctic Ocean (SIEAO) and to clarify the underlying physical processes, we conducted ensemble hindcasts, started on January 1st, April 1st, July 1st, and October 1st for each year from 1980 to 2011, for lead times of up three years, using the Model for Interdisciplinary Research on Climate (MIROC) version 5 initialized with the observed atmosphere and ocean anomalies and sea ice concentration. Significant skill is found for the winter months: the December SIEAO can be predicted up to 1 year ahead. This skill is attributed to the subsurface ocean heat content originating in the North Atlantic. The subsurface water flows into the Barents Sea from spring to fall and emerges at the surface in winter by vertical mixing, and eventually affects the sea ice variability there. Meanwhile, the September SIEAO predictions are skillful for lead times of up to 3 months, due to the persistence of sea ice in the Beaufort, Chukchi, and East Siberian Seas initialized in July, as suggested by previous studies.


2020 ◽  
Author(s):  
Katrine Elnegaard Hansen ◽  
Jacques Giraudeau ◽  
Lukas Wacker ◽  
Christof Pearce ◽  
Marit-Solveig Seidenkrantz

Abstract. The Baffin Bay is a semi-enclosed basin connecting the Arctic Ocean and the western North Atlantic, thus making out a significant pathway for heat exchange. Here we reconstruct the alternating advection of relatively warmer and saline Atlantic waters versus the incursion of colder Arctic water masses entering the Baffin Bay through the multiple gateways in the Canadian Arctic Archipelago and the Nares Strait during the Holocene. We carried out benthic foraminiferal assemblage analyses, X-Ray Fluorescence scanning and radiocarbon dating of a 738  cm long marine sediment core retrieved from the eastern Baffin Bay near Upernavik (Core AMD14-204C; 987m water depth). Results reveal that the eastern Baffin Bay was subjected to several oceanographic changes during the last 9.2 ka BP. Waning deglacial conditions with enhanced meltwater influxes and an extensive sea-ice cover prevailed in the eastern Baffin Bay from 9.2–7.9 ka BP. A transition towards bottom water ameliorations are recorded at 7.9 ka BP by increased advection of Atlantic water masses, encompassing the Holocene Thermal Maximum. A cold period with growing sea-ice cover at 6.7 ka BP interrupts the overall warm subsurface water conditions, promoted by a weaker northward flow of Atlantic waters. The onset of the Neoglaciation at ca. 2.9 ka BP, is marked by an abrupt transition towards a benthic fauna dominated by agglutinated species likely partly explained by a reduction of the influx of Atlantic water, allowing increased influx of the cold, corrosive Baffin Bay Deep Water originating from the Arctic Ocean, to enter the Baffin Bay through the Nares Strait. These cold subsurface water conditions persisted throughout the late Holocene, only interrupted by short-lived warmings superimposed on this cooling trend.


2011 ◽  
Vol 8 (5) ◽  
pp. 10617-10644
Author(s):  
A. Yamamoto ◽  
M. Kawamiya ◽  
A. Ishida ◽  
Y. Yamanaka ◽  
S. Watanabe

Abstract. The largest pH decline and widespread undersaturation with respect to aragonite in this century due to uptake of anthropogenic carbon dioxide in the Arctic Ocean have been projected. The reductions in pH and aragonite saturation state have been caused primarily by an increase in the concentration of atmospheric carbon dioxide. However, in a previous study, simulations with and without warming showed that these reductions in the Arctic Ocean also advances due to the melting of sea ice caused by global warming. Therefore, future projections of pH and aragonite saturation in the Arctic Ocean will be affected by how rapidly the reduction in sea ice occurs. In this study, the impact of sea-ice reduction rate on projected pH and aragonite saturation state in the Arctic surface waters was investigated. Reductions in pH and aragonite saturation were calculated from the outputs of two versions of an earth system model (ESM) with different sea-ice reduction rates under similar CO2 emission scenarios. The newer model version projects that Arctic summer ice-free condition will be achieved by the year 2040, and the older version predicts ice-free condition by 2090. The Arctic surface water was projected to be undersaturated with respect to aragonite in the annual mean when atmospheric CO2 concentration reached 480 (550) ppm in year 2040 (2048) in new (old) version. At an atmospheric CO2 concentration of 520 ppm, the maximum differences in pH and aragonite saturation state between the two versions were 0.08 and 0.15, respectively. The analysis showed that the decreases in pH and aragonite saturation state due to rapid sea-ice reduction were caused by increases in both CO2 uptake and freshwater input. Thus, the reductions in pH and aragonite saturation state in the Arctic surface waters are significantly affected by the difference in future projections for sea-ice reduction rate. The critical CO2 concentration, at which the Arctic surface waters become undersaturated with respect to aragonite on annual mean bias, would be lower by 70 ppm in the version with the rapid sea-ice reduction.


2018 ◽  
Vol 12 (2) ◽  
pp. 675-683 ◽  
Author(s):  
Jun Ono ◽  
Hiroaki Tatebe ◽  
Yoshiki Komuro ◽  
Masato I. Nodzu ◽  
Masayoshi Ishii

Abstract. To assess the skill of seasonal to inter-annual predictions of the detrended sea ice extent in the Arctic Ocean (SIEAO) and to clarify the underlying physical processes, we conducted ensemble hindcasts, started on 1 January, 1 April, 1 July and 1 October for each year from 1980 to 2011, for lead times up to three years, using the Model for Interdisciplinary Research on Climate (MIROC) version 5 initialised with the observed atmosphere and ocean anomalies and sea ice concentration. Significant skill is found for the winter months: the December SIEAO can be predicted up to 11 months ahead (anomaly correlation coefficient is 0.42). This skill might be attributed to the subsurface ocean heat content originating in the North Atlantic. A plausible mechanism is as follows: the subsurface water flows into the Barents Sea from spring to fall and emerges at the surface in winter by vertical mixing, and eventually affects the sea ice variability there. Meanwhile, the September SIEAO predictions are skillful for lead times of up to two months, due to the persistence of sea ice in the Beaufort, Chukchi, and East Siberian seas initialised in July, as suggested by previous studies.


2020 ◽  
Author(s):  
Alexis Beaupré-Laperrière ◽  
Alfonso Mucci ◽  
Helmuth Thomas

Abstract. Ocean acidification driven by the uptake of anthropogenic CO2 by the surface oceans constitutes a potential threat to the health of marine ecosystems around the globe. The Arctic Ocean is particularly vulnerable to acidification due to its relatively low buffering capacity and, thus, is an ideal region to study the progression and effects of acidification before they become globally widespread. The appearance of undersaturated surface waters with respect to the carbonate mineral aragonite (ΩA 


2019 ◽  
Vol 33 (8) ◽  
pp. 1085-1099 ◽  
Author(s):  
Takuhei Shiozaki ◽  
Minoru Ijichi ◽  
Amane Fujiwara ◽  
Akiko Makabe ◽  
Shigeto Nishino ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document